
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics, Ben-
Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals
and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously stated problems
can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
February 15, 2020

• 5565: Proposed by Kenneth Korbin, New York, NY

A trapezoid with integer length sides is inscribed in a circle with diameter 73 = 343. Find
the minimum and the maximum possible values of the perimeter.

• 5566: Proposed by Michael Brozinsky, Central Islip , NY,

Square ABCD (in clockwise order) with all sides equal to x has point E on AB at a distance
α · x from B where 0 < α < 1. The right triangle EBC is folded along segment EC so that
what was previously corner B is now at point B′. A perpendicular from B′ to AD intersects

AD at H. If the ratio of the areas of trapezoids AEB′H to DCB′H is
7

18
what is α?

• 5567: Proposed by D.M. Bătinetu-Giurgiu, National College “Matei Basarab” Bucharest, and
Neulai Stanciu, “George Emil Palade” School, Buză, Romania

Let [A1A2A3A4] be a tetrahedron with total area S, and with the area of Sk being the area
of the face opposite the vertex Ak, k = 1, 2, 3, 4. Prove that

20

3
≤

4∑
k=1

S + Sk
S − Sk

< 8.

• 5568: Proposed by Daniel Sitaru, National Economic College “Theodor Costescu,” Mehedinti,
Romania

Given: A ∈M5(<),det(A5 + I5) 6= 0, and A20 − I5 = A5(A5 + I5). Prove that 4
√

detA ∈ <.

• 5569: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Compute:

lim
x→0

tan(x · cos(x))− tan(x) · cos(tan(x))

x7
.
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• 5570: Proposed by Ovidiu Furdui and Alina Sîntămărian, Technical University of Cluj-
Napoca, Cluj-Napoca, Romania

Calculate ∫ 1

0

(ln(1− x) + x)2

x3
dx.

Solutions

• 5547: Proposed by Kenneth Korbin, New York, NY

Given Heronian Triangle ABC with AC = 10201 and BC = 10301. Observe that the sum of
the digits of AC is 4 and the sum of the digits of BC is 5. Find AB if the sum of its digits
is 3.

(An Heronian Triangle is one whose side lengths and area are integers.)

Solutions 1 by Dionne Bailey, Elsie Campbell, Charles Diminnie, and Trey Smith,
Angelo State University, San Angelo, TX

We found two answers for AB. To begin, many possibilities can be ruled out because of the
triangle inequality which states that if x, y, z are the sides of a triangle and x ≤ y ≤ z, then
z < x+ y. This immediately eliminates the situations where AB has one, two, or six or more
digits. Also, for the given values of BC and AC, AB cannot have an odd units digit for this
causes the semiperimeter s and the quantities s− AB, s−BC, and s−AC to be of the form
m

2
, where m is an odd integer. As a result, Heron’s Formula for the area of 4ABC will

not yield an integer and the triangle will not be Heronian. Finally, the requirement that the
sum of the digits of AB must be 3 restricts the digits of AB to satisfy one of the following
scenarios:
a) one 3 and two or more 0’s; b) one 1, one 2, and one or more 0’s; c) three 1’s and perhaps
some 0’s. Of these, we found two solutions satisfying type b)

Answer 1. Let AB = 102. Then, the triangle inequality is satisfied because BC > AC > AB
and BC < AB +AC. Also, the semiperimeter s becomes

s =
AB +BC +AC

2
=

20604

2
= 10302.

Then,

s
(
s−AB

) (
s−BC

) (
s−AC

)
= (10302) (10200) (1) (101)

= (10302) (102) (101) (100)

= (10302)2 (10)2

and Heron’s Formula yields

area (4ABC) = (10302) (10) = 103020.

Hence, this choice of AB produces a Heronian Triangle for which the sum of the digits of AB
is 3.
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Answer 2. Choose AB = 20100. Then, AB > BC > AC with
AB < BC +AC and the triangle inequality is satisfied. Further, in this case,

s =
AB +BC +AC

2
=

40602

2
= 20301

and

s
(
s−AB

) (
s−BC

) (
s−AC

)
= (20301) (201) (10000) (10100)

= (20301) (201) (101) (10)6

= (20301)2 (10)6 .

Then, Heron’s Formula gives

area (4ABC) = (20301) (10)3 = 20301000.

Once again, this choice of AB determines a Heronian Triangle for which the sum of the digits
of AB is 3.

Solution 2 by Brian D. Beasley, Presbyterian College, Clinton, SC

We let x = AB and note that x must be an integer with 100 < x < 20502. Next, we let
∆ be the area of triangle ABC. Using Heron’s formula with s = (x + 10201 + 10301)/2 =
(1/2)x+ 10251, we have

∆2 = s(s− x)(s− 10201)(s− 10301) = (−x2/4 + 102512)(x2/4− 502).

Finally, we check via computer search the 29 values of x between 100 and 20502 with digit
sum equal to 3, and only two produce an integer area for ABC:

When x = 102, we have ∆ = 103020.

When x = 20100, we have ∆ = 20301000.

Addenda. (i) It is interesting to note that in each solution, the sum of the digits of ∆ is 6.

(ii) The 29 integers between 100 and 20502 with digit sum equal to 3 are:

102, 111, 120, 201, 210, 300

1002, 1011, 1020, 1101, 1110, 1200, 2001, 2010, 2100, 3000

10002, 10011, 10020, 10101, 10110, 10200, 11001, 11010, 11100, 12000, 20001, 20010, 20100

Solution 3 by Ioannis D. Sfikas, National and Kapodistrian University of Athens,
Greece

If a, b, and c are the lengths of the sides of a triangle and A,B, and C are the opposite angles,
then we have: b = 10201 and a = 10301. So, by the cosine law we have:

cosC =
a2 + b2 − c2

2ab
=

210171002− c2

2210161002

Since −1 ≤ cosC ≤ 1, then 100 ≤ c ≤ 20502. Furthermore, by Heron’s formula for the area
A of the triangle ABC, we have-

4A =
√

(a+ b+ c)(a+ b− c)(b− c− a)(c+ a− b)),
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or:

4A =
√

(20502 + c)(20502− c)(c− 100)(c+ 100) =
√
−c4 + 420342004c2 − 4203320040000

So, the side c must satisfy the following properties:

•(1) The side c must be an even number since the perimeter of a Heronian triangle is always
an even number. Thus, every Heronian triangle has an odd number of sides of even length
(Buchholz and MacDougall, 2008, p. 19).

•(2) For the side c we have: 100 ≤ c ≤ 20502.

•(3) The sum of the digits of the side c is 3.

•(4) The side c satisfies the Diophantine equation:

16A2 = −c4 + 420342004c2 − 4203320040000. (a)

So, the values of side c come from the permutations of the digits of the sets:

{0, 0, 0, 1, 2}, {0, 0, 1, 1, 1}, {0, 0, 0, 3}.
So, by (1), (2), and (3), we have the possible values for side c:

102, 120, 210, 1002, 1020, 1200, 2100, 2010, 10002, 10020,

10200, 12000, 20100, 20010, 1110, 11100, 11010, 10110, 300, 3000. We can check by equation (a)
that c = 102 or c = 20100.

[1] Buchholz, Ralph H. and Mac Dougall, James A. (2008). Cyclic polygons with rational
sides and area. Journal of Number Theory, 128:17-48.

Also solved by Ed Gray, Highland Beach, FL; Kee-Wai Lau, Hong Kong, China;
David E. Manes, Oneonta NY; Albert Stadler, Herrliberg, Switzerland; David
Stone and John Hawkins, Georgia Southern University, Statesboro, GA, and the
proposer.

• 5548: Proposed by Michel Bataille, Rouen, France

Given nonzero real numbers p and q, solve the system
2p2x3 − 2pqxy2 − (2p− 1)x = y

2q2y3 − 2pqx2y + (2q + 1)y = x

Solution 1 by Anthony J. Bevelacqua, North Dakota State University, Grand
Forks, ND

If we multiply the first equation by qy and the second by px we have
2p2qx3y − 2pq2xy3 − (2p− 1)qxy = qy2

2pq2xy3 − 2p2qx3y + (2q + 1)pxy = px2.

Now collect terms to find
2pqxy(px2 − qy2)− (2p− 1)qxy = qy2

−2pqxy(px2 − qy2) + (2q + 1)pxy = px2
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and sum these equations to yield (p+ q)xy = px2 + qy2. Thus

(px− qy)(x− y) = px2 − (p+ q)xy + qy2

= 0.

Thus in any solution to our original system we have x = y or px = qy.
Note that if (x, y) is a solution to our system we have x = 0 if and only if y = 0. Since (0, 0)
is a solution to our system for any p and q, we suppose hereafter that (x, y) is a solution with
xy 6= 0.
When x = y = t with t 6= 0 our system becomes

2p2t3 − 2pqt3 − (2p− 1)t = t

2q2t3 − 2pqt3 + (2q + 1)t = t

and we collect terms to find 
2p(p− q)t3 − (2p− 1)t = t

2q(q − p)t3 + (2q + 1)t = t.

Each of these equations reduces to (p− q)t3 = t. Thus p > q and t =
±1√
p− q

.

When x = t/p and y = t/q with t 6= 0 our system becomes
2

p
t3 − 2

q
t3 − 2p− 1

p
t =

1

q
t

2

q
t3 − 2

p
t3 +

2q + 1

q
t =

1

p
t.

If we multiply both equations by pq we have
2(q − p)t3 − (2p− 1)qt = pt

2(p− q)t3 + (2q + 1)pt = qt

and each of these reduces to 2(q − p)t3 = (2pq − (q − p))t. Thus
pq

q − p
≥ 1

2
and t =

±
√

pq

p− q
− 1

2
. (Note that since t 6= 0, p = q would give 2pqt = 0, a contradiction with p and

q nonzero.)
Therefore the real solutions (x, y) to our original system are

1. (0, 0) for any p and q,

2.

(
±1√
p− q

,
±1√
p− q

)
when p > q, and

3.

(
±1

p

√
pq

q − p
− 1

2
,
±1

q

√
pq

q − p
− 1

2

)
when

pq

q − p
≥ 1

2
.
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If we want all solutions, we just ignore the restrictions on p and q.
Some real solutions:

– When p = 1, q = −2 we have both cases (2) and (3) above so the solutions to our system
are

(0, 0),

(
±
√

1

3
,±
√

1

3

)
,

(
±
√

1

6
,∓1

2

√
1

6

)
– When p = 2, q = 1 we have case (2) but not (3), and our solutions are

(0, 0), (±1,±1)

– When p = −3, q = −2 we have case (3) but not (2). Our solutions are

(0, 0),

(
±1

3

√
11

2
,±1

2

√
11

2

)

– When p = −1, q = 1 we have neither case (2) nor (3) so the only solution is (0, 0).

– Finally, we note that case (3) can give the trivial solution (0, 0) as in p = 1, q = −1 or
p = 1/3, q = 1.

Solution 2 by Hatef I. Arshagi, Guilford Technical Community College, Jamestown,
NC

Clearly, (0, 0) is a solution of the system. Now, if we set x = 0, then from the first equation
we get y = 0, also if we set y = 0 in the second equation, we get x = 0, from these we conclude
that any nontrivial solution (x, y) of the system should have both x 6= 0, and y 6= 0.

To find the nontrivial solutions, we add both sides of the equations and rearrange them, to
obtain:

2px2(px− qy)− 2qy2(px− qy)− 2(px− qy) + x+ y = x+ y,

from this, we have
(px− qy)(px2 − qy2 − 1) = 0,

then {
px− qy = 0, or

px2 − qy2 − 1 = 0 (1)

From px − qy = 0, with q 6= 0, we have y =
px

q
, and substituting this into the equation

2p2x3 − 2pqxy2 − (2p− 1)x = y with x 6= 0, we obtain

x2 =
−p− 2pq + q

2p2(p− q).

Since we want the value of x to be real, we must have
−p− 2pq + q

p− q
> 0.

For this, we consider two cases. Case 1:

{
p− q > 0, and

−q − p− 2pq + q > 0.
From these we conclude that −2pq > p− q > 0, and −2pq > 0, or pq < 0. ,
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That is,
−p− 2pq + q

2p2(p− q)
> 0, if and only if

{
pq < 0

p− q > 0′
and then x = ±1

p
·
√
−p− 2pq + q

2(p− q)
,

and by px = qy, we obtain y = ±1

q
·
√
−p− 2pq + q

2(p− q)
.

Case 2: To have
−p− 2pq + q

p− q
> 0, we consider

{
p− q = 0,

−p− 2pq + q < 0

From these we can write −2pq < p−q < 0, or −2pq < 0 and pq > 0. That is,
−p− 2pq + q

2p2(p− q)
>

0, if and only if

{
pq > 0,
p− q < 0

and then x = ±1

p
·
√
−p− 2pq + q

2(p− q)
, and by px = qy, we obtain

y = ±1

q
·
√
−p− 2pq + q

2(p− q)
.

It is worth nothing that −p−2pq+q = 0 is possible and by looking at the graph of q =
p

1− 2p
,

we see that for nonzero p, q we have p− q 6= 0 and we get the solution x = y = 0.

Now, we look at px2−qy2−1 = 0, of (1). We rearrange the first equation and use px2−qy2 = 1,
then y = 2p2x2 − 2pqxy2 − (2p − 1)x = 2px(px2 − qy2) − 2px + x = 2px − 2px + x = y, or
x = y.

Using x = y and px2 − qy2 = 1, gives us the solutions x = y = ± 1√
p− q

, if p− q > 0.

Also solved by Pat Costello, Eastern Kentucky University, Richmond, KY; Ed
Gray, Highland Beach, FL; Kee-Wai Lau, Hong Kong, China; Ioannis D. Sfikas,
National and Kapodistrian University of Athens, Greece; Albert Stadler, Her-
rliberg, Switzerland, and the proposer.

• 5549: Proposed by Arkady Alt, San Jose, CA; Albert Stadler, Herrliberg, Switzerland,

Let P be an arbitrary point in 4 ABC that has side lengths a, b, and c .
a) Find minimal value of

F (P ) :=
a2

da (P )
+

b2

db (P )
+

c2

dc (P )
;

b) Prove the inequality
a2

da (P )
+

b2

db (P )
+

c2

dc (P )
≥ 36r, where r is the inradius.

Solution 1 by Michael N. Fried, Ben-Gurion University of the Negev, Beer-Sheva,
Israel

a) Define x = daa, y = dbb, z = dcc. These are the twice the areas of the triangles determined
by P and the sides of 4ABC, and, thus, if 2∆ is the area of 4ABC, we have:

g(x, y, z) = x+ y + z = 2∆

In terms of these variables, the function we need to minimize is:

F (x, y, z) =
a3

x
+
b3

y
+
c3

z

Using Lagrange multipliers, we have for the point minimizing F (x, y, z) constrained to g(x, y, z) =
2∆ (it is easy to see that no maximum exists since any one of x, y, or z can be made a small
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as one pleases):
grad(F ) = λ grad(g)

or, (
−a

3

x2
,− b

3

y2
,− c

3

z2

)
= λ (1, 1, 1)

From this, we have:
a3

x2
=
b3

y2
=
c3

z2

so that (keeping in mind that x, y, z ≥ 0), we have:

y =

(
b

a

)3/2

x

z =
( c
a

)3/2
x

Combined with the condition, g(x, y, z) = 2∆, we have:

x =
2∆a3/2

a3/2 + b3/2 + c3/2

Similarly,

y =
2∆b3/2

a3/2 + b3/2 + c3/2

z =
2∆c3/2

a3/2 + b3/2 + c3/2

Substituting these values into F we obtain for the minimum value:

Fmin =

(
a3/2 + b3/2 + c3/2

)2
2∆

b) Since a2/3, b2/3, c2/3 are all positive values, we know by, for example, the AG inequality
that Fmin will itself be minimized when these terms are equal, that is, when a = b = c, and

the minimum will be, accordingly,
(3a3/2)

2

2∆ = 9a3

2∆ . Now, since in this case4ABC is equilateral

and has inradius r, it follows that a = 2r
√

3 and 2∆ = 6r2
√

3. Hence, we have:

Fmin =

(
a3/2 + b3/2 + c3/2

)2
2∆

≥ 9a3

2∆
= 36r

Solution 2 by Moti Levy, Rehovot, Israel

a) Let da (P ) denotes the distance from a point P to side a of the triangle.
Let x := da (P ) , y := db (P ) and z := da (P ) . Then our problem can be reformulated as:

Minimize
a2

x
+
b2

y
+
c2

z
subject to the constraint ax+ by + cz = 2S,

where S is the area of the triangle.
The Lagrangian function is

L (x, y, z, λ) :=
a2

x
+
b2

y
+
c2

z
− λ (ax+ by + cz − 2S) .
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∂f

∂x
= −a

2

x2
− λax = 0 (1)

∂f

∂y
= − b

2

y2
− λby = 0

∂f

∂z
= − c

2

z2
− λcz = 0

∂f

∂λ
= −ax− by − cz + 2S = 0

The real solution of (1) is

x = −
(a
λ

) 1
3
, y = −

(
b

λ

) 1
3

, z = −
( c
λ

) 1
3
, λ

1
3 = −a

4
3 + b

4
3 + c

4
3

2S
,

Therefore, the point

(
2Sa

1
3

a
4
3 +b

4
3 +c

4
3
, 2Sb

1
3

a
4
3 +b

4
3 +c

4
3
, 2Sc

1
3

a
4
3 +b

4
3 +c

4
3

)
is critical point.

To verify that it is local minimum, we compute the bordered Hessian

H4 =


0 −a −b −c
−a 2a

2

x3
0 0

−b 0 2 b
2

y3
0

−c 0 0 2 c
2

z3


−det (H4) = 4

a2b2c2x3 + a2b2c2y3 + a2b2c2z3

x3y3z3
.

H3 =

 0 −a −b
−a 2a

2

x3
0

−b 0 2 b
2

y3


−det (H3) = 2

a2b2x3 + a2b2y3

x3y3
.

Since −det (H4) > 0 and −det (H3) > 0 at the critical point, then the point(
2Sa

1
3

a
4
3 +b

4
3 +c

4
3
, 2Sb

1
3

a
4
3 +b

4
3 +c

4
3
, 2Sc

1
3

a
4
3 +b

4
3 +c

4
3

)
is indeed local minimum.

By evaluation of F (P ) at the local minimum, we conclude that the minimal value of F (P ) is

1

2S

(
a

5
3 + b

5
3 + c

5
3

)(
a

4
3 + b

4
3 + c

4
3

)
.

b) By the mean power inequality(
a

5
3 + b

5
3 + c

5
3

3

) 3
5

≥ a+ b+ c

3
,

and (
a

4
3 + b

4
3 + c

4
3

3

) 3
4

≥ a+ b+ c

3
.
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Hence

1

2S

(
a

5
3 + b

5
3 + c

5
3

)(
a

4
3 + b

4
3 + c

4
3

)
≥ 3−

2
3 (a+ b+ c)

5
3 ∗ 3−

1
3 (a+ b+ c)

4
3

=
1

2S
∗ 1

3
(a+ b+ c)3 .

The following two facts are well known

S =
1

2
r (a+ b+ c)

and
(a+ b+ c)2 ≥ 108r2,

(Bottema, “Geometric inequalities,” page 52, inequality No. 5.11).
Therefore,

F (P ) ≥ 1

2S
∗ 1

3
(a+ b+ c)3 ≥ 1

2S
∗ 1

3
∗ 108r2 2S

r
= 36r.

Solution 3 by Albert Stadler, Herrliberg, Switzerland

(a) Clearly ada + bdb + cdc = 2∆, where ∆ is the area of the triangle. F (P ) is the minimum

of
a2

da
+
b2

db
+
c2

dc
under the constraint ada + bdb + cdc = 2∆. To find F (P ) we use Lagrange

multipliers. Let

L(da, db, dc, λ) =
a2

da
+
b2

db
+
c2

dc
+ λ(ada + bdb + cdc).

Then
∂

∂da
L =

∂

∂db
L =

∂

∂dc
L = 0 and thus

−a
2

d2
a

+ λa = − b
2

d2
b

+ λb = − c
2

d2
c

+ λc = 0, ada + bdb + cdc = 2δ.

We conclude that

da =

√
a

λ
, db =

√
b

λ
, dc =

√
c

λ
,

2∆ = ada + bd + cc =
a3/2 + b3/2 + c3/2

√
λ,

da =
2∆
√
a

a3/2 + b3/2 + cd
3/2
a

, db =
2∆
√
b

a3/2 + b3/2 + cd
3/2
a

, dc =
2∆
√
c

a3/2 + b3/2 + cd
3/2
a

,

F (P ) =

(
a3/2 + b3/2 + c3/2

)2
2∆

(b) We prove the stronger inequality F (P ) ≥ 18R, where R is the circumradius of the
triangle. (The inequality is stronger, since R ≥ 2r by Euler’s inequality).

It is known that R =
abc

4∆
. Therefore the inequality F (P ) ≥ 18R is equivalent to

(
a3/2 + b3/2 + c3/2

)2
≥ 9abc
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which is obviously true by the AM-GM inequality.

Solution 4 by Michel Bataille, Rouen, France

Note. Part b was Junior Problem 58 in Mathproblems (proposed by the same author). Two
solutions appear in Vol. 6 Issue 1 (2016) (http://www.mathproblems-ks.org). The solution
below borrows from these two solutions.

a) Let Sa, Sb, Sc denote the areas of ∆BPC,∆CPA,∆APB, respectively, and let S = Sa +
Sb + Sc be the area of ∆ABC. Since 2Sx = x · dx(P ) for x = a, b, c, we have F (P ) =
1
2

(
a3

Sa
+ b3

Sb
+ c3

Sc

)
. From the Cauchy-Schwarz inequality, we deduce(

a3

Sa
+
b3

Sb
+
c3

Sc

)
(Sa + Sb + Sc) ≥ (a3/2 + b3/2 + c3/2)2

and so

F (P ) ≥ (a3/2 + b3/2 + c3/2)2

2S
. (1)

For the point P0 with trilinear coordinates (
√
a :
√
b :
√
c), that is, with barycentric coor-

dinates (a
√
a : b
√
b : c
√
c), we have 2Sa = λa

√
a, 2Sb = λb

√
b, 2Sc = λc

√
c for some λ. By

addition, 2S = λ(a3/2 + b3/2 + c3/2), hence

F (P0) =
a3

λa3/2
+

b3

λb3/2
+

c3

λc3/2
=
a3/2 + b3/2 + c3/2

λ
=

(a3/2 + b3/2 + c3/2)2

2S
. (2)

From (1) and (2), and with s = a+b+c
2 , the minimal value of F (P ) is

(a3/2 + b3/2 + c3/2)2

2S
=

(a3/2 + b3/2 + c3/2)2

2
√
s(s− a)(s− b)(s− c)

b) An inequality of means yields
(
a3/2+b3/2+c3/2

3

)2/3
≥ a+b+c

3 , hence (a3/2 + b3/2 + c3/2)2 ≥
(a+b+c)3

3 . Since 2S = 2rs = r(a+ b+ c), we see that the minimal value of F (P ) found above

is greater than or equal to (a+b+c)2

3r = 4s2

3r .
But, from the geometric mean-arithmetic mean, we have

r2s =
r2s2

s
=
S2

s
= (s− a)(s− b)(s− c) ≤

(
s− a+ s− b+ s− c

3

)3

=
s3

27

so that s2 ≥ 27r2. Thus, 4s2

3r ≥ 36r and the required result follows.

Also solved by Ed Gray, Highland Beach, FL; Kee-Wai Lau, Hong Kong, China;
Ioannis D. Sfikas, National and Kapodistrian University of Athens, Greece, and
the proposer.

• 5550: Proposed by Ángel Plaza, University of the Las Palmas de Gran Canaria, Spain

Prove that
∞∑
n=4

n−2∑
k=2

1

k
(
n
k

) =
1

2
.

Solution 1 by Brian Bradie, Christopher Newport University, Newport News, VA

11



For k ≥ 1,

k

(
n
k

)
= n

(
n− 1
k − 1

)
.

Moreover, (
n
k

)−1

= (n+ 1)

∫ 1

0
tk(1− t)n−k dt.

Thus,

∞∑
n=4

n−2∑
k=2

1

k

(
n
k

) =

∞∑
n=4

n−2∑
k=2

1

n

(
n− 1
k − 1

)
=

∞∑
n=4

n−2∑
k=2

∫ 1

0
tk−1(1− t)n−k dt

=

∞∑
k=2

∞∑
n=k+2

∫ 1

0
tk−1(1− t)n−k dt

=
∞∑
k=2

∫ 1

0

tk−1

(1− t)k
∞∑

n=k+2

(1− t)n dt

=
∞∑
k=2

∫ 1

0

tk−1

(1− t)k
· (1− t)k+2

t
dt

=
∞∑
k=2

∫ 1

0
tk−2(1− t)2 dt

=

∫ 1

0
(1− t)2

∞∑
k=2

tk−2 dt

=

∫ 1

0
(1− t) dt =

1

2
.

Solution 2 by Ulrich Abel, Technische Hochschule Mittelhessen, Germany and
Manfred Hauben, Pfizer Inc and NYU Langone Health, USA

We show that

s :=
∞∑
n=4

n−2∑
k=2

1

k
(
n
k

) =
1

2
.

Proof: Observing that

1

k
(
n
k

) =
Γ (k) Γ (n− k + 1)

Γ (n+ 1)
= B (k, n+ 1− k) =

∫ 1

0
tk−1 (1− t)n−k dt,

where B denotes the beta function, we obtain

s =

∞∑
n=4

n−4∑
k=0

∫ 1

0
tk+1 (1− t)n−2−k dt.

Application of the formula for geometric series yields

s =

∞∑
n=4

∫ 1

0
t (1− t)2 t

n−3 − (1− t)n−3

t− (1− t)
dt.

12



Inserting

(1− t)
∞∑
n=4

tn−3 = t, t
∞∑
n=4

(1− t)n−3 = 1− t,

leads to

s =

∫ 1

0
(1− t) t

2 − (1− t)2

2t− 1
dt =

∫ 1

0
(1− t) dt =

1

2
.

Solution 3 by Ioannis D. Sfikas, National and Kapodistrian University of Athens,
Greece

We have

+∞∑
n=4

n−2∑
k=2

1

k
(
n
k

) =

+∞∑
n=4

n−2∑
k=2

(n− k)(k − 1)!

n!
=

+∞∑
n=4

n−2∑
k=2

Γ(n− k + 1)Γ(k)

Γ(n+ 1)

=
+∞∑
n=4

n−2∑
k=2

B(n− k + 1, k) =
+∞∑
n=4

n−2∑
k=2

∫ 1

0
xn−k(1− x)k−1dx

=

∫ 1

0

+∞∑
n=4

n−2∑
k=2

xn(1− x)k−1x−kdx =

∫ 1

0

∑
k≥2

(1− x)k−1x−k
∑

n≥k+2

xndx

=

∫ 1

0

∑
k≥2

(1− x)k−1x−k
xk+2

1− x
dx =

∫ 1

0
x2
∑
k≥2

(1− x)k−2dx =

∫ 1

0
xdx =

1

2
.

Also solved by Michel Bataille, Rouen, France; Ed Gray, Highland Beach, FL;
Kee-Wai Lau, Hong Kong, China; Moti Levy, Rehovot, Israel; Carl Libis, Columbia
Southern University, Orange Beach, AL; Albert Stadler, Herrliberg, Switzerland,
and the proposer.

• 5551: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let α1, α2, . . . , αn with n ≥ 2 be positive real numbers. Prove that the following inequality
holds:

1 +
1

n2

∑
1≤i<j≤n

(√
αiαj+1 −

√
αjαi+1

)2
αiαj

≤

(
1

n

n∑
k=1

(
αk+1

αk

)2
)1/2

(Here the subscripts are taken modulo n.)

Solution 1 by Kee-Wai Lau, Hong Kong, China

Let Sn =
∑

1≤i<j≤n

(√
αiαj+1 −

√
αjαi+1

)2
αiαj

, which equals

∑
1≤j<i≤n

(√
αiαj+1 −

√
αjαi+1

)2
αiαj

by symmetry. Hence, Sn equals

1

2

n∑
i=1

n∑
j=1

(√
αiαj+1 −

√
αjαi+1

)2
αiαj

13



=
1

2

 n∑
i=1

n∑
j=1

aj+1

aj
+

n∑
i=1

n∑
j=1

ai+1

ai

− n∑
i=1

n∑
j=1

√
ai+1

ai

√
aj+1

aj

= n

n∑
i=1

ai+1

ai
−

(
n∑
i=1

√
ai+1

ai

)2

.

Now by the Cauchy-Schwatz inequality, we have
n∑
i=1

ai+1

ai
≤

(
n

n∑
i=1

(
ai+1

ai

)2
) 1

2

,

and by the AM-GM inequality, we have
n∑
i=1

√
ai+1

ai
≥ n 2n

√√√√ n∏
i=1

ai+1

ai
= n.

The inequality of the problem follows easily.

Solution 2 by Brian Bradie, Christopher Newport University, Newport News, VA
By the arithmetic mean - quadratic mean inequality,

1

n

n∑
k=1

αk+1

αk
≤

(
1

n

n∑
k=1

(
αk+1

αk

)2
)1/2

,

so it suffices to show that

1 +
1

n2

∑
1≤i<j≤n

(
√
αiαj+1 −

√
αjαi+1)2

αiαj
≤ 1

n

n∑
k=1

αk+1

αk
.

Now,

(
√
αiαj+1 −

√
αjαi+1)2

αiαj
=

(√
αiαj+1 −

√
αjαi+1

√
αiαj

)2

=

(√
αj+1

αj
−
√
αi+1

αi

)2

=
αj+1

αj
− 2

√
αj+1αi+1

αjαi
+
αi+1

αi
,

so, ∑
1≤i<j≤n

(
√
αiαj+1 −

√
αjαi+1)2

αiαj
=

∑
1≤i<j≤n

(
αj+1

αj
− 2

√
αj+1αi+1

αjαi
+
αi+1

αi

)

= (n− 1)
n∑
j=1

αj+1

αj
− 2

∑
1≤i<j≤n

√
αj+1αi+1

αjαi
.

By the arithmetic mean - geometric mean inequality,

n∑
j=1

αj+1

αj
≥ n n

√√√√ n∏
j=1

αj+1

αj
= n,
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and ∑
1≤i<j≤n

√
αj+1αi+1

αjαi
≥ n(n− 1)

2
n(n−1)/4

√ ∏
1≤i<j≤n

αj+1αi+1

αjαi
=
n(n− 1)

2
.

Therefore,

1 +
1

n2

∑
1≤i<j≤n

(
√
αiαj+1 −

√
αjαi+1)2

αiαj

= 1 +
1

n

n∑
j=1

αj+1

αj
− 1

n2

 n∑
j=1

αj+1

αj
+ 2

∑
1≤i<j≤n

√
αj+1αi+1

αjαi


≤ 1 +

1

n

n∑
j=1

αj+1

αj
− 1

n2

(
n+ 2 · n(n− 1)

2

)

= 1 +
1

n

n∑
j=1

αj+1

αj
− 1

n2
· n2

=
1

n

n∑
j=1

αj+1

αj
.

Also solved by Michel Bataille, Rouen, France; ; Carl Libis, Columbia Southern
University, Orange Beach, AL; Moti Levy, Rehovot, Israel; Ioannis D. Sfikas, Na-
tional and Kapodistrian University of Athens, Greece; Albert Stadler, Herrliberg,
Switzerland, and the proposer.

• 5552: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca, Roma-
nia

Find all differentiable functions f : < → < such that f ′(x) − f(−x) = ex,∀x ∈ <, with
f(0) = 0.

Solution 1 by Anthony J. Bevelacqua, University of North Dakota, Great Falls,
ND

Suppose f(x) is a solution to

f ′(x)− f(−x) = ex, ∀x ∈ <. (1)

Since f ′(x) = ex + f(−x) we see that f ′(x) is differentiable. Now

f ′′(x) = ex − f ′(−x)

= ex − (e−x + f(x))

= 2 sinhx− f(x).

Thus f(x) is a solution to the linear differential equation

y′′ + y = 2 sinhx (2)

Therefore f(x) = sinhx + C sinx + D cosx for some constants C and D. (Why? It’s clear
that sinhx is a particular solution to (2) and that the general solution to the associated
homogeneous equation y′′ + y = 0 is C sinx+D cosx for constants C and D.)

15



Since f(0) = 0 we must have D = 0. So f(x) = sinhx+ C sinx for some constant C. Since

f ′(x)− f(−x) = coshx+ C cosx− (− sinhx− C sinx)

= ex + C(sinx+ cosx)

and f(x) is a solution of (1) we must have

C(sinx+ cosx) = 0, ∀x ∈ <.

If we set x = 0 we find C = 0. Therefore f(x) = sinhx.
Since sinhx is, in fact, a solution to (1), we see that the unique solution to our original
equation is f(x) = sinhx.

Solution 2 by Dionne Bailey, Elsie Campbell, Charles Diminnie, and Trey Smith,
Angelo State University, San Angelo, TX

We note first that since
f ′ (x) = f (−x) + ex (1)

for all x ∈ R and f (0) = 0, we have

f ′ (0) = e0 = 1. (2)

Also, because equation (1) is true for all x ∈ R, it follows that f ′′ (x) exists for all x ∈ R and

f ′′ (x) = −f ′ (−x) + ex.

Then, (1) implies that
f ′′ (x) = −

[
f (x) + e−x

]
+ ex

or
f ′′ (x) + f (x) = ex − e−x (3)

for all x ∈ R.

We can solve (3) by the usual procedures taught in introductory
differential equations courses. The first step is to solve the equation

f ′′h (x) + fh (x) = 0. (4)

Since sinx and cosx are two independent solutions of (4), the general solution for (4) is
fh (x) = c1 cosx+ c2 sinx.

Then to find a particular solution fp (x) for (3), we try fp (x) = aex+be−x for some constants
a and b. When this is substituted in (3) and the result is simplified, we get

2aex + 2be−x = ex − e−x

for all x ∈ R. This yields a =
1

2
and b = −1

2
and hence,

fp (x) =
1

2
ex − 1

2
e−x = sinhx.

This presents

f (x) = fh (x) + fp (x)

= c1 cosx+ c2 sinx+ sinhx

16



as the general solution of (3). Since f (0) = 0, we get

0 = c1

and thus,
f (x) = c2 sinx+ sinhx.

If we follow this with condition (2), the result is

1 = f ′ (0)

= c2 cos 0 + cosh 0

= c2 + 1

and hence, c2 = 0 also. As a result, the only feasible solution for this problem is f (x) = sinhx.

To wrap things up, if f (x) = sinhx, then f ′ (x) = coshx =
ex + e−x

2
and we have

f ′ (x)− f (−x) = coshx− sinh (−x)

=
ex + e−x

2
− e−x − ex

2
= ex

and f (0) = 0. This completes our solution.

Solution 3 by Rob Downes, Newark Academy, Livingston, NJ

Assume f(x) has the series solution:

f(x) = c0 + c1x+ c2x
2 + c3x

3 + c4x
4 + · · · . Then,

f ′(x) = c1 + 2c2x+ 3c3x
2 + 4c4x

3 + · · · . And,

f(−x) = c0 − c1x+ c2x
2 − c3x

3 + c4x
4 + · · · .

Using the fact that ex = 1 + x +
x2

2!
+
x3

3!
+ +

x4

4!
+ · · · , and the series for f ′(x) and f(−x)

above, we substitute into the given differential equation:

(
c1 + 2c2x+ 3c3x

2 + 4c4x
3 + · · ·

)
−
(
c0 − c1x+ c2x

2 − c3x
3 + c4x

4 + · · ·
)

= 1+x+
x2

2!
+
x3

3!
+· · ·

Equating coefficients, yields the system:

c1 − c0 = 1

2c2 + c1 = 1

3c3 − c2 =
1

2!

4x4 + c3 =
1

3!

...
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Using the initial condition f(0) = 0 gives c0 = 0. It is easy to see that

ck =


0 for k even

1

k!
for k odd

Substituting these coefficients back into the series for f(x) gives:

f(x) =
x

1!
+
x3

3!
+
x5

5!
+
x7

7!
+ · · · , which is the well-known series expansion for sinhx.

Lastly, we note that f(x) = sinh(x) satisfies the statement of the problem.

Solution 4 by Moti Levy, Rehovot, Israel

It is straightforward to check that f (x) = sinh (x) satisfies the differential equation and initial
condition.

Now it remains to check if there are more functions which satisfy the differential equation
and initial condition.

Suppose sinh (x) + r (x) is such a function, then

(sinh (x) + r (x))
′−(sinh(−x)+r(−x)) = cosh (x) + r

′
(x) + sinh (x)− r (−x)

= r
′
(x)− r (−x) + ex.

It follows that the function r (x) must satisfy

r′(x)− r(−x) = 0, r(0) = 0, (1)

d

dr
r′(x) = r′′(x),

d

dx
r(−x) = −r′(−x)

r′′(x) + r′(−x) = 0, (2)

By setting −x in (1),
r′(−x)− (x) = 0, (3)

Subtracting (3) from (2) results in the following differential equation for r (x).

r
′′

(x) + r (x) = 0, r (0) = 0. (4)

Solution of (4) is
r (x) = α sin (x) .

Substitution of (5) into (1) gives

r
′
(x)− r (−x) = α cos (x) + α sin (x) = 0 (1)

Hence α = 0, and we conclude that only f (x) = sinh (x) satisfies the differential equation
and initial condition.

Also solved by Ulrich Abel,Technische Hochschule Mittelhessen, Friedberg, Ger-
many; Yagub N. Aliyev, ADA University, Baku,Azerbaijan; Hatef I. Arshagi,
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Guilford Technical Community College, Jamestown NC; Brian Bradie, Christo-
pher Newport University, Newport News, VA; Bruno Salgueiro Fanego, Viveiro,
Spain; Michael N. Fried, Ben-Gurion University of the Negev, Beer-Sheva, Israel;
Ed Gray, Highland Beach, FL; G. C. Greubel, Newport News, VA; Kee-Wai Lau,
Hong Kong, China; Ioannis D. Sfikas, National and Kapodistrian University of
Athens, Greece; Albert Stadler, Herrliberg, Switzerland, and the proposer.

Mea− Culpa

Albert Stadler of Herrliberg, Switzerland noted a mistake in the featured solution to
problem 5544. The author of the solution “argues that f(0) = 0 and f ′(x) > 0 for every real

x. However f(x) is discontinuous at x = (2k + 1)
π

2
. So the argument is invalid.”

Two solutions to the problem were received, the featured solution and one by Ed Gray of
Highland Beach, FL. I shared Ed’s solution with Albert and he responded as follows:
“Thanks for sharing with me the e-mail of Ed Gray. As Ed correctly points out there are
infinitely many solutions to the given system of equations, contrary to what (the author of the
featured solution wrote, namely that x = y = z = 0 is the only real solution.) Ed specifically
highlights that there are infinitely many solutions with x = y = z. It turns out that there
are many more solutions. I have devised an algorithm to find all solutions (see attachment).
Initially I was not intrigued by this problem. However when I was working on it it I realized
that this problem has more in it than what I originally thought. What do the French say?
L’appétit vient en mangeant.”

Albert’s solution now follows:

• 5544: Proposed by Seyran Brahimov, Baku State University, Masalli, Azerbaijan

Solve in <: 
tan−1 x = tan y + tan z
tan−1 y = tanx+ tan z
tan−1 z = tanx+ tan y

Solution by Albert Stadler, Herrliberg, Switzerland

The given system of equations is equivalent to

arctanx+ tanx = arctan y + tan y = arctan z + tan z,

2(tanx+ tan y + tan z) = arctanx+ arctan y + arctan z.

Before we set out to solve this system of equations we make a few preliminary remarks: (i) If
(x, y, z) is a solution then (−x,−y,−z) is as well a solution.

(ii) If x = y = z the system of equations collapses to 2 tanx = arctanx. Given an integer k
there is a unique real root tk in the interval Ik := (kπ − π/2, kπ + π/2), because

lim
x→π−π/2

2 tanx− arctanx =∞,
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lim
x→π−π/2

2 tanx− arctanx =∞,

d

dx
(2 tanx− arctanx) =

2

cos2 x
− 1

1 + x2
> 0,

so that the function 2 tanx− arctanx is monotonically increasing in Ik. Therefore

(x, y, z) = (tk, tk, tk) is a solution of the system of equations for every integer k.

(iii) If x = 0 then arctan y+tan y = arctan z+tan z = 0 & 2(tan y+tan z) = arctan y+arctan z.
Given an integer k the equation arctan y + tan y = 0 has a unique root sk in the interval
(kπ − π/2, kπ + π/2). (Use the same argument as above.) Clearly sk = −sk. Furthermore

3(tan y + tan z) = tan y + arctan y + tan z + arctan z = 0

from which we deduce that + tan z = 0. Then arctan y = − arctan z, and (0, sk, sk), (sk, 0,−sk), (sk,−sk, 0)
are solutions of the given system of equations for every integer k.

(iv) If (x, y, z) is a solution of the system of equations there is a real number t such that
arctanx+ tanx = arctan y + tan y = arctan z + tan z = t.

By remark (i) and (iii) we may assume that t > 0. Given t > 0 there is a unique real
root uk,t of the equation arctanu + tanu = t in the interval (kπ − π/2, kπ + π/2). So
x = ua,t, y = ub,t, z = uc,t for some integers a, b, c. The equation

2(tanx+ tan y + tan z) = arctanx+ arctan y + arctan z

implies
3(tanx + tan y + tan z) = arctanx + arctan y + arctan z + tanx + tan y + tan z = 3t, or
equivalently tanx+ tan y + tan z = t, as well as

arctanx+ arctan y + arctan z = 2t.

Therefore tanua,t + tanub,t + tanuct = t and |t| < 3π/4. Thus if

arctanu+ tanu = t

for u = uk,t ∈ (kπ − π/2, kπ + π/2) then |uk,t − kπ| < 1.4, , i.e. uk,t is bounded away from
kπ ± π/2.

Let Lk be the circle centered at kπ and radius 1.4 that is run through once in the positive
direction. By Cauchys integral theorem the equation tanua,t,+ tanub,t+tanuc,t = t translates
to

t =

1
2πi

∫
Lat

tan z
1

1+z2
+ 1

cos2 z

arctan z + tan z − t
dz

tanua,t
+

1
2πi

∫
Lbt

tan z
1

1+z2
+ 1

cos2 z

arctan z + tan z − t
dz

tanub,t

+

1
2πi

∫
Lct

tan z
1

1+z2
+ 1

cos2 z

arctan z + tan z − t
dz

tanuc,t
=

1

2πi

∫
|z|=1.4

tan z

(
1

1+(z+πa)2
+ 1

cos2 z

arctan(z + πa) + tan z − t
+

1
1+(z+πb)2

+ 1
cos2 z

arctan(z + πb) + tan z − t
+
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+

1
1+(z+πc)2

+ 1
cos2 z

arctan(z + πc) + tan z − t
dz

So given a, b, c this is a transcendental equation for t that we may solve using Newton’s
method (https://en.wikipedia.org/wiki/Newton27s method). Once we have t we can calculate
x = ua,t, y = ub,t, z = uc,t using the formula

ukt =
1

2πi

∫
|z|=1.4

(z + nk)

1
1+(z+πk)2

+ 1
cos2 z

arctan(z + πk) + tan z − t
dz, k ∈ {a, b, c}.

Let

f(k, t) =
1

2πi
int|z|=1.4 tan z

1
1+(z+πk)2

+ 1
cos2 z

arctan(z + πk) + tan z − t
dz,

(k, t) =
∂

∂t
f(k, t) =

1

2πi

∫
|z|=1.4

tan z

1
1+(z+πk)2

+ 1
cos2 z

(arctan(z + πk) + tan z − t)2
dz

Then Newton’s method implies the recursion

tn+1 = tn −
tn − f(a, tn)− f(b, tn)− f(c, tn)

1− g(a, tn) + g(b, tn) + g(ctn)

=
f(a, tn)− tng(a, tn) + f(b, tn)− tng(b, tn) + f(c, tn)− tng(c, tn)

1− g(a, tn)− g(b, tn)− g(c, tn)
(1)

Let’s consider as an example the case a=1, b=2, c=3. Starting with t1 = 1, we find (with the
help of Mathematica using above iteration):

t2 = 2.1209406577190077,

t3 = 2.1058473431512574,

t4 = 2.105843425064334,

t5 = 2.105843425064067,

We then find with t = 2.105843425064 :

x = u1,t = 3.811219014066947,

y = u2,t = 6.879942228618484,

z = u3,t = 9.99040120284607,

and we verify that these values indeed satisfy the original system of equations.

To summarize:

• We obtain all solutions of the given system of equations by starting with a triple (a,b,c) of
integers.

• We next calculate t from (1) via Newton’s method.

• We calculate

1

2πi

∫
|z|=1.4

(z + πk)

1
1+(z+πk)2

+ 1
cos2 z

arctan(z + πk) + tan z − t
dz

for k = a, k = b, and k = c to obtain the solution (x, y, z) with x ∈ (aπ − π/2, aπ + π/2), y ∈
(bπ − π/2, bπ + π/2), z ∈ (cπ − π/2, cπ + π/2).
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