Problems Ted Eisenberg, Section Editor
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This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

Solutions to the problems stated in this issue should be posted before
January 15, 2020

e 5559: Proposed by Kenneth Korbin, New York, NY

For every positive integer N there are two Pythagorean triangles with area
(N)(N +1)(2N +1)(2N — 1)(4N + 1)(4N? + 2N +1). Find the sides of the triangles if
N =4.

e 5560: Proposed by Michael Brozinsky, Central Islip, NY

Square ABCD (in clockwise order) with all sides equal to x has point E' as the midpoint of
side AB. The right triangle EBC'is folded along segment EC' so that what was previously
corner B is now at point B’ which is at a distance d from side AD. Find d and also the
distance of B’ from AB.

e 5561: Proposed by Pedro Pantoja, Natal/RN, Brazil
Calculate the exact value of:

5T 137 177
COS — -+ COS —— — COS —.
28 28 28

e 5562: Proposed by Daniel Sitaru, National Economic College “Theodor Costescu,” Mehed-
inti, Romania
Prove: If a,b,c > 1, then
b
e petepeas3y Syl
a ¢ b
e 5563: Proposed by José Luis Diaz-Barrero, Barcelona Tech, Barcelona, Spain

Without the aid of a computer, find the value of
<= 15

Z 25n2 + 45n — 36~

n=1
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e 5564: Proposed by Ovidiu Furdui and Alina Sintamarian, Technical University of Cluj-
Napoca, Cluj-Napoca, Romania

Let a > 0 and let f : [0,a] — R be a Riemann integrable function. Calculate

a
lim ﬂdx.
n—oo Jq 14+ nx™

Solutions

5541: Proposed by Kenneth Korbin, New York, NY

A convex cyclic quadrilateral has inradius r and circumradius R. The distance from the
incenter to the circumcenter is 169. Find positive integers r and R.

Solution 1 by Ioannis D. Sfikas, National and Kapodistrian University of
Athens, Greece

Fuss’ theorem gives a relation between the inradius r, the circumradius R, and the
distance d between the incenter I and the circumcenter O, for any bicentric
quadrilateral. The relation is:

1 1 1

Rtd?  (R—dP 2 (1)

or equivalently:
2r?(R? 4+ d*) = (R* — d*)*.

It was derived by Nicolaus Fuss (1755-1826) in 1792. Solving for d yields:

d= R+ 12— v /AR 1 12,




Since d = 169 = 132, then we may assume the relation (1) as a Diophantine equation:

1 1

1
R+ 1392 " (R_1392 2

with 7, R > 0 or:
»  (R*—13%?

’]" = "
2(R? +13%)
We may assume the Diophantine equation:

2AR* +13") = o,

and:
R= —%9 [(\/§+ 1)(3—2v2)" — (V2-1)(3+ 2@)"} ,
R= ? (V2+2)(3-2v2)" - (vV2-2)(3+2v2)"],

for n > 1 and n € N. So, we have: = r(n) which must be an integer. By calculations,
we have:

r = 28560 and R = 40391.

Solution 2 by Albert Stadler, Herrliberg, Switzerland



By Fuss’ theorem (https://en.wikipedia.org/wiki/Bicentric-quadrilateral),

1 n 1 1
(R—2)?  (R+a)* ¥
or equivalently
R? — 22
V2(R? + 22)

where r is the inradius, R the circumradius and x the distance between the incenter and
the circumcenter of the bicentric quadrilateral.

By assumption, x = 169 and r is an integer. Therefore /2(R? + 22) is a (rational)
integer. We note that

2R? + 222 — 42 422
2r = = /2(R%2 + 22) — ———,
2(R? + 2?) ( ) V2(R? + 22)

which implies that \/2(R2 + 22) divides 2213*. We conclude that 2(R? + 2?) €
{4,16,676,2704, 114244, 456976, 19307236, 77228944, 3262922884, 13051691536 }.

The only feasible value for R is R = 40391 which leads to r = 28560.

Solution 3 by Ed Gray of Highland Beach, FL

Editor's comment: 1T am taking the liberty of jumping into the middle of Ed’s solution.
Like those above, his solution started off using Fuss’ Formula, and immediately
substituted d = 169 into it. After some algebra he obtained that

R* — (2r% 4+ 57122)R? = 815730721 — 5712212,

that he solved as a quadratic in R?. Solving this he obtained that
R? = 72 4+ 28561 & /12 + 114244. Letting e? = r? + 114244, he continued on as follows:

Then 114244 = 2-2-13* = €2 — r2 = (e — 7)(e + ). The sum of the factors e — r and
e+ r is even and equals 2e. Therefore the factors are both even or both odd. Since their
product is even, they both must be even. There are only 2 possibilities:

(i) e—r=2and e+ r =2-28561 = 57122. Then 2e = 57124, e = 28562, and r = 28560.
From the equation R? = r? + 28561 + —ry/r2 + 114244),

R? = 815673600 4 28561 + (28560)(28562) = 815702161 4 815730720.

Clearly the negative sign is not viable.

So R? = 815702161 + 815730720 = 1631432881 and R = 40391. The solution pair (r, R)
is (28560, 40391), and they satisfy Fuss’ Theorem.

(ii) e—r=2-13=26and e +r =2 (13%) = 4394. Then 2e = 4420, ¢ = 2210, and

r = 2184. From the equation R? = r? + 28561 & —r/r2 + 114244) we see that

R? = 4769856 + 28561 4 (2184)(2210). However, in this is the case, then R? will end in
7, and so R cannot be an integer.

Also solved by Kee-Wai Lau, Hong Kong, China; David Stone and John
Hawkins, Georgia Southern University, Statesboro, GA, and the proposer.



5542: Proposed by Michel Bataille, Rouen, France

3 4
Evaluate in closed form: cos i + cos o cos —W
13 13 13°

(Closed form means that the answer should not be expressed as a decimal equivalent.)

Solution 1 by David E. Manes, Oneonta, NY

A7 7+v13 1413

s 3
11 sh h — — — — = = . T
We will show t at00813+60813 00513 g 1 o do so, we

assume the following identities:

cos? (1) + cos? 31 + cos? 41 = M,
13 13 13 8

- 2k 27 47 2nm 1
COS = COS —+ cos + -+ cos = ——,
prt 2n+1 n+1 2n+1 n+1 2

s 3m 4
where n is a positive integer. Let C' = cos — + cos — — cos —. Then

13 13 13°
3 4 3T 4 3 4
C’2:cos2(7r>+cos2 il +0082 il +2(:os—005——QCOSECObI—QCOSICOSI
13 13 13 13 13 13 13 13 13
11+ 1 + 9 T 3T 9 4 9 3T 4
= COS — COS — — 2 COS — COS — — 2 C0S — COS —
8 13 13 13 13 13 13°
By the product-to-sum formulas, one finds
T 3T 47 2w
2C€0S — COS — = COS — + cOoS —
13 13 13 13
5 T 4 _ 5T 3
C081300813— cos13 cos13
9 3 47 _ 7 T
cos 13 cos 3= cos 13 cos 3
Using the addition formula for cos(m — z) = — cosx, we get

5T

_ 5T _ 8 _
00513—(308 T 13 _COS13’ coslg—cos 13

T _ TEY oos 6T o T ooy 127
COS 13—COS s 13 = COS 13, COSl3—COS 13

Therefore, rearranging the terms, one obtains,

3 47 3 4 2k 1
2cos—cos——2coslcos— 2(:03—7TCOS.—7r Zcos <7T> = ——.

13 13 13 13 13 13 13 2
Therefore,
o 114++/13 1 7413 7+ V13
C*=—————=——— whence C =/ —.
8 2 8 8
2
7T++v13 14+ +v13 . 14+ +v13 7+ V13
Note that S = 1 since —1 = —5
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Solution 2 by Angel Plaza, University of Las Palmas de Gran Canaria, Spain

4
Let z = cos1 + cos—w — cos—ﬂ, 0= s and ¢ = cos 6. If ¢, = cos k6, then

13 13 13 13
Cop = 20% —1, 2¢cpcq = cpyq + Cp—g, and ¢34 = c13—. Notice that > 0. Therefore

2 = C%+C§+Ci+2€1€3—26164—26364
co+1 cg+ 1 cg+ 1
= + +C4+c2—C5—C3—C7—C1,
2 2 2
1
2?4z = 5(3+302—205+06—2C7+08)

1
= 5(3 + 3c2 + 3¢ + 3cg).

Now, if y = ¢o + ¢¢ + cg, then

ca+1 cio+1 cig+1
Y= T o bt et e e et e
2y 3cy +3c10+ 3c12 +2y + 3
2y2 = 3(C4+610+012)+2y+3.
Now, since 02+C4+C6+Cg+610+010+012:—% because

6
co+ca+cg+ceg+ciot+ciotciza=R (Z 6(2kﬂi)/13> and applying the sum of a
k=1

1
geometric series, we get —3 Then, ¢4 + cig + c12 = —5 (c2+c6+cg) = 5~ and

-14++13

so, 2% = 3(—% —y) + 2y + 3 from where, since y > 0, y = 1

1++13

1
Finally, by solving 22 + 2 = = (3 + 3y) and, since 2 > 0 it is obtained z = 1

2
Solution 3 by Andrea Fanchini, Canti, Italy

Let p be an odd prime number. Then we know that

p—1
gp =Y exp(2mk’/p)

k=0

is a quadratic Gaussian sum, where g, = /p or i,/p according to whether p=1or p=3
(mod 4). So g13 = V/13. Therefore,

VI3 = 1 4+ e2mi/13 | 8mi/13 | —8mi/13 | 6mi/13 | —2mi/13 | —6mi/13
L e Omi/13 | 2mi/13 | 6mi/13 | —8mi/13 | 8mi/13 | 2mi/13

Recalling that e + e~ = 2cosz we then have:

2 6 8m  V13-1
= il SR S 1
cos T3 + cos 3 + cos 3 , (1)

Now we consider the sum of cosines with arguments in arithmetic progression.



n—1 .
cos (a _ sin (nd/2) os [ a (n—1)d
kZ:O (atkd) = 0@ ( T )

where a,d € R,d # 0, and that n is a positive integer.

In our case, we set a =d = %g and n = 6, then

27 o T 06 5Tt eos 5T 4 cos 10T L os 127 sm‘jgcosigr
€0S — + €08 — + cos — + cos — + cos —— = —== =
13 13 13 13 13 13 sin 13
_ —2sin 13 cos g’g
N 2 sin & 13
_
~ 2sin 13
B sin & 13
" 2sin 13
B 1
= 5
Substituting the sum in (1) into this last expression we obtain;
47r+ 0w 12w 1 V13-1 V13 +1
cos— +cos——+cos—=—- — — = ———.
13 13 13 2 4 4
So finally we have:
r Wr dnow o swdw VT34l
€08 5= — €08 75~ — C0S 75 = C0S 73 + COS T —COS T = — —
Solution 4 by Kee-Wai Lau, Hong Kong, China
We show that
ks . 3 3r _ 1++13 ()
cos T+ cos o —cos o= — —.

Denote the left side of (1) by x, which is clearly positive. So (1) will follow from

422 — 20 — 3 = 0. (2)
1 20 1 66
Let § = and ¢ = v/—1. Since cos?f = i, cos%&Gzi,
13 2 2
9 1 — cos 50
cos” 460 = — 2 cos B cos 30 = cos 20+cos 46, 2cosfcos4df = cos 30+ cos b, and

2 cos 30 cos 460 = cos — cos 66, so

6
4x2—2x—3:3+62(—1 cos(k0) —SZ * cos(k6)
k=1

12 ;
= 3R€Z (—1)k€lk9 = 3Re <1—}—629 =0.
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This proves (2) and completes the solution.

Solution 5 by Brian D. Beasley, Presbyterian College, Clinton, SC

1++v13
—1

We show that the given expression equals

Let a = cos(m/13), b = cos(37/13), and ¢ = cos(4r/13). Using the multiple-angle
formulas for cosine, we have b = 4a® — 3a and ¢ = 8a* — 8a? + 1. Then
a+b—c=(14+/13)/4 if and only if

[4(—8a* + 4a® 4+ 8a? — 2a — 1) — 12 = 13.
This in turn holds if and only if f(a)(16a® — 8a — 12) = 0, where

f(z) = 6425 — 3225 — 802 + 3223 + 2422 — 62 — 1.
Using another multiple-angle formula for cosine, namely
cos(136) = 4096713 — 133127 +166407° — 998477 +2912r° — 36473+ 13r = (r+1)[f(r)]?—1
with 7 = cos 8, we have
(a+D[f(@)*=0.

Since a # —1, we conclude f(a) = 0, completing the proof.
Also solved by Brian Bradie, Christopher Newport University, Newport
News,VA; Ed Gray, Highland Beach, FL; loannis D. Sfikas, National and

Kapodistrian University of Athens, Greece; Albert Stadler, Herrliberg,
Switzerland, and the proposer.

5543: Proposed by Titu Zvonaru, Comanesti, Romania

Let ABDC be a convex quadrilateral such that
L/ABC = /BCA =25°,/CBD = /ADC = 45°. Compute the value of /ZDAC. (Note

the order of the vertices.)

Solution 1 by David A. Huckaby, Angelo State University, San Angelo, TX
From the given facts LABC = /BCA = 25° and /CBD = 45°, we know that

/CAB = 130° and that D lies on the ray emanating from point B at a 45° angle from
BC', as shown in the figure below.

130°

45°

D

From the additional given fact /ADC = 45°, by inspection one solution is the kite
shown in the figure below, in which /DAC = 65°.



65° | 65°
c 25 25 8
45 45
45°| 45°
D

It is clear that if D is farther from B (on the ray emanating from point B at a 45° angle
from BC), then /ADC < 45°, and that as D moves closer to B that /ZADC > 45° and
increases, reaches a maximum, and then decreases to approach /ABC = 25° as D
approaches B. This implies that there is one more location for point D such that
LADC = 45°.

To find it, let us place the points on a coordinate grid. See the figure below.

A(0.5, 1 +0.5tan 25°)

C(0,1) B(1, 1)

D(x, X)

(0.5, 0.5)

Consider ZADC = 45° to be an inscribed angle of the circle passing through the points
A, C, and the first location for D, namely (2, 2) The other point where this circle
intersects the line y = z is the second location for D.

If the circle has center (h, k) and radius r, we have
O0—h?+(1-k?=(3-h?+(1+3 tan25° —k)? = (3 — h)?+ (3 — k)% The second
equation gives 1 + %tan 25° —k =k — 5, whence k = %(3 + tan 25°). Using this value for
k in the first equation gives

(0—h)%+(1—1[3+tan25°))% = (§1 h)? + (1+ 3 tan25° — 1[3 + tan 25°])2. Expanding
terms and solving for h yields h = (1 4 tan 25°).

To find 72, we substitute the point C(0, 1) into the equation of the circle

( — 7[1 —|— tan 25°])? + (y — 1[3 + tan 25°])2 = 2. Doing this and expanding terms yields
1(1 + tan? 25°). So the equation of the circle is

[1+tan25°))% + (y — 1[3 + tan 25°])% = 1(1 + tan? 25°).

T‘

(z —

»&M—'oo

The circle intersects the line y = z when

(z — [1 4+ tan25°))% + (x — §[3 + tan 25°])% = £ (1 + tan? 25°). Expanding this yields the
quadratic equation 2z% — (2 + tan 25°)z + (1 + tan®) = 0. The quadratic formula yields
the two solutions z = %, which we already know, and z = %(1 + tan 25°).



Referring to the figure below, we see that

_AE 1(1+tan25°)—1 B o ko
tan /ADE = o = 1+%tin250_%(1+t§n250) = tan25° so that ZADE = 25°. So
/ADB = 25° + 45° = 70°, whence /DAB = 180° — 70° — 70° = 40°, so that
/DAC = 130° — 40° = 90°.

4
A(0.5, 1+ 0.5tan 25°)
2 < Lt E(0.5[1+ tan 25°], 1+ 0.5tan 25°])

c(0,1) % —2 > B(1,1)

1457

D(0.5[1+ tan 25°], 0.5[1+ tan 25°])

(0.5, 0.5)

So the two possible values of /DAC are 65° and 90°.

Solution 2 by Ioannis D. Sfikas, National and Kapodistrian University of
Athens, Greece

The triangle ABC is isosceles and BC'D is right isosceles, making AD the angle bisector
of /BAC. So /DCA = 65°. Furthermore, there are two possible answers since there are
two positions for D.

Let F lie on BD, such that CF and BD are perpendicular. Let the circumcircle of
ACF intersect BD at E. Now, /EAC =90°, or /BAE =40°, or /AEB = /ABE. So,
AB = AE. But AB = AC. So, AE = AC and /AEC=/AFC=45°. So, E and F both
satisfy the conditions imposed on D and in each case, we have /DAC = 90°,65°,
respectively (as D=E,F).

Solution 3 by Ed Gray, Highland Beach, FL

From the information given, triangle ABC' is isosceles, with AB = AC. To enhance the
lucidity of the calculations, we assign the value of 2.0 to each of these sides. We define
/DAC =x,/BAD =a,/BCD = ¢, and /BDA =b.
(1) In triangle ABC, by the Law of Sines, — BC = — 2 ; BC = 3.625231148
sin(130°)  sin(c)
(2) In triangle CBD, ¢+ 45° 4+ b+ 45° = 180°, so b+ ¢ = 90°.
BC BD

(3) In triangle CBD, by the Law of Sines, (b 1 15°) = sin(c)’ or
(@) =
sin (b +45°)  cos(b)’

BD 2 2si
(5) In triangle ABD, — = - ,BD = M
sin (a)  sin(b) sin (b)
(6) In triangle ABD,a+ 70° 4+ b = 180°,a + b = 110°,a = 110° — .

From Equation (4),

) BC _ 2-sin(a)
sin (b + 45°)  sin(b) - cos(b)’
BC 2 -sin(110° — b)

(8) sin (b+45°)  sin(b) - cos(b)

10



Substituting BC' from Equation (1), we have a trigonometric equation for b.
(9) 1.812615574- sin(b) - cos(b) =
[sin(110°) - cos(b) — cos(110°) - sin(b)] - [sin(b) - cos(45°) + cos(b) - sin(45°)].

2
Since cos(45°) = sin(45°) = \2[, we divide both sides by 0.707106781
(10) 2.563425529- sin(b) - cos(b) =
sin(110) - sin(b) - cos(b) + sin(110°) - cos?(b) — cos(110°) - sin?(b) — cos(110°) - sin(b) - cos(b)

(11) 2.563425529 -sin(b) - cos(h) = 0.939692621 - sin(b) - cos(b) + 0.939692621 - cos?(b) +
0.342020143 - sin?(b) + 0.342020143 - sin(b) - cos(b)

(12) 1.281712765- sin(b) - cos(b) = 0.342020143 - sin?(b) + 0.939692621 - cos?(b).
Squaring,

(13) 1.6427876 - sin®(b) - cos?(b) =
0.116977778 - sin*(b) + 0.642787609 - sin?(b) - cos?(b) + 0.8883022222 - cos* (b),

(14) cos?(b) = 1 — sin?(b)

(15) cos*(b) =1 — 2 - sin?(b) + sin*(b)

(16) 0.116977778 - sin(b) — sin?(b) - cos?(b) + 0.883022222(1 — 2 - sin?(b) + sin*(b)) = 0
(

17) 0.116977778-sin*(b) — sin?(b)(1 — sin?(b)) 4 0.883022222 — 1.766044444 - sin?(b) +
0.883022222 - sin*(b) = 0

(18) 2 - sin(b) — 2.766044444 - sin?(b) + 0.883022222 = 0

This is a quadratic equation in sin?(b), with solutions:

(19) 4 -sin?(b) = 2.766044444 + /7.651001866 — 7.064177776), or
(20) 4 - sin2(b) = 2.766044444 + 7.66044444

2
(21) So sin?(by) = 7 sin(by) = 0.707106781, by = 45°.

3.532088888
(22) sin®(by) = == = 0.883022222, sin(by) = 0.939692621, by = 70°.

When b = 45°, a = 65°,x = 65°.
When b= 70° a = 40°, x = 90°.

Editor's comment: The following remark followed this solution: “I must admit having 2
answers is a surprise,..., however both solutions satisfy Equation (12), which is a good
sign, because that is the fundamental equation and no extraneous root was introduced
by squaring.”

Solution 4 by Michel Bataille, Rouen, France
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A

-
\<

We consider AABC, which we suppose positively oriented, and let M be the midpoint
of BC (see figure). Since /ABC = /BCA, AM is the perpendicular bisector of BC.

First, let Dy be the image of B under the rotation with centre M and angle +90°.
Then, ABD1C' is a convex quadrilateral and /CBDy = /AD{C = 45°.

Second, let Dy on BDq be such that ZCADy = 90°. Since /ZBAC = 130°, we have
[BADy = 40°. Also, /ABDy = 25° + 45° = 70° and so

LADsB = 180° — 40° — 70° = 70° = LABD». 1t follows that ADs = AB = AC' and the
triangle C ADs is right-angled at A and isosceles. As a result the quadrilateral ABD>C
is convex with /ADsC = 45° = /CBDs.

Thus, we have found two candidates D, D5 for the vertex D. There cannot be more:
indeed, because of the convexity of ABDC, D must be on the ray BD; (to ensure that
LCBD = 45°) and on the arc of circle, locus of the points P such that

Z(ﬁ, P_le) = +45° (to ensure that ZADC = 45°). We conclude that the answer to the
problem is twofold: if D = Dy, then /DAC = %ZBAC = 65°; if D = Do, then

/DAC = 90°.

Also solved by Andrea Fanchini, Canti, Italy; Kee-Wai Lau, Hong Kong,
China; Raquel Rosado, Hallie Kaiser, Mitch DeJong, and Caleb Edington,
students at Taylor University, Upland, IN; David Stone and John Hawkins,
Georgia Southern University, Statesboro, GA, and the proposer.

5544: Proposed by Seyran Brahimov, Baku State University, Masalli, Azerbaijan

Solve in R

tan™'x = tany + tan 2

tan~! Yy = tanx + tanz
tan~!z = tanz + tany

Solution by Ioannis D. Sfikas, National and Kapodistrian University of
Athens, Greece

Adding the equations we have:
2(2 tanz — tan~!z) = 0.

cyc
Let f(z) = ’2tan:n—tan_1:n‘ , for ever {:L’ eR:km— g <z < k7r+g and k € Z}.

12



2 1
Then f'(z) = cos2r 12+ 1

function and f(x) > f(0) = 0, since equality holds if z = 0.
Similarly, f(y) > f(0) =0 and f(z) > f(0) = 0, since equality holds if y = z = 0.

Then, the only real solution is x =y = z = 0.

> 0 for every z € R. So, f(x) is an increasing monotonic

Also solved by Ed Gray, Highland Beach, FL and the proposer.

5545: Proposed by José Luis Diaz-Barrero, Barcelona Tech, Barcelona, Spain

Let p, q be two twin primes. Show that

p—1 q—1
2 3 2 k
7=1 p k=1 q

is a perfect square and determine it. (Here |z] represents the integer part of x).

Solution 1 by Albert Stadler, Herrliberg, Switzerland

The integers p and g are odd (since they are twin primes) and so their difference is two.
Let z = (p+ ¢q)/2. Then min(p,q) = x — 1, max(p,q) = = + 1.

We consider the rectangle R with vertices A(0,0), B(p/2,0),C(p/2,q/2), D(0,q/2) in the
Euclidean plane. The number of lattice points that are strictly inside R equals
p—1 g—1

r=2"-
2 2

There are no lattice points on the diagonal AC, since p and ¢ are relatively prime.
Clearly L equals the number of lattice points strictly inside the triangle ABC plus the
number of lattice points strictly inside the triangle C D A. Therefore

p—1 g—1
=~ | jq ~ | kq
=35l
j=1 p = L P
‘We conclude that
p=1 a=1
~ | jq | kq 2
14+4 Z{J—i— {J = 14+44L=14+(p-1)(g—-1) =14 (z—2)z=(z—1)* =
j=1 p L P

= (min(p,q))*.

Solution 2 by Charles Diminnie and Simon Pfeil, Angelo State University,
San Angelo, TX

We will assume only that p is odd, p > 3, and ¢ = p + 2. It is unnecessary to restrict p
-1
and/or ¢ to be prime. To begin, if j = 1,2,..., pT’ then

13



] —1
Hence, VQJ :jforj:1,2,...,L.
p

Further, for k=1,2,..., ——

Therefore, Lka :k—lforkzl,Q,...,q_l
q

Using the known result that

for n > 1, we obtain

14




and

(substituting i = k — 1 in the last sum.)

As a result,

p—1 q—1

(£l

j=1 k=1
2 2
p"—1 p°—1
=1+4
+ ( e )
=1+ (p*—1)
:p2.

Solution 3 by Anthony J. Bevelacqua, University of North Dakota, Grand
Forks, ND

For any relatively prime odd integers p,q > 3 we have

p—1 g—1
2 . 2

JQJ kp p—1 ¢—1
|2 ey ) 2t
j_l{p =1t 2 2

by, for example, Theorem 86 of Nagell’s Number Theory. (The proof is standard and
elementary: Consider the set of integer points (7, k) with 1 < j < (p—1)/2 and

1 <k<(qg—1)/2. There are %% such points. None of these are on the line py = gx.
p—1

The number of points below the line is > jil {%J while the number of points above is

a-1
S| 2]

Now suppose p and ¢ are twin primes with p < q. Then p and ¢ are relatively prime odd
integers > 3 with ¢ =p+ 2. So

p—1 a—1
2| |k -1 ¢g—1
14_4 :E: lg + AB — 14_4. 8444,.g444,
: p q 2 2

J=1 k=1
p—1 p+1
= 144.= - .2 =
+ 2 2

= p2.
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(Note that we only need p and ¢ to be consecutive odd integers > 3 in this argument.)

Solution 4 by Brian Bradie, Christopher Newport University, Newport
News, VA

Without loss of generality, suppose p is the smaller of the two primes. Then p > 3, and
p + 2 = q. Therefore,

P

|
—

]

|
—

y
I
—
SHv S
_
I
N
N
<o

<.
Il

hQ
|
—
Q
|
—

=
i w
I
i
ol
=3
_
Il
gl
N
I
i
w

3 —1 — +1
2 2 8
and

p—1 g—1
2 . 2 2 2

k —1 —1

1+4 {”J+ V’J - 1+4<p8 +p8 >

= LP o1 b 4

Solution 5 by Moti Levy, Rehovot, Israel

Without loss of generality, suppose p is the smaller of the two primes. Then p > 3, and
p + 2 = q. Therefore,

p—1 p=1 p—1
2 ]q 2 2 2
R ACHIE
Jj=1 p Jj=1 P Jj=1
p—1 p+l

3 —1 — 1
i sl it i s
2 2 8
and
p—1 a—1
~ | ~ | k -1 p*—1
144 VQJJF {pJ - 1+4<p8 +p8 )
= LP 1 b4
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Solution 6 by Ulrich Abel, Technische Hochschule Mittelhessen, Germany

We show the slightly more general formula

(nlﬂ2\_ (n+1)/2

n+2 n 9
1+4 E + E k = =3,5,7,9,...).
i=1 i) J k=1 {”JFQJ ' " )

Proof: Let n > 3 be an odd integer. Since j < j"TJFQ =5+ %J < j+1, for

1§j§(n—l)/Z,andk—l<k—n2—f2:k’ni_m<k,for1§k:§(n+1)/2,weconclude
that
(n—1)/2 (n+1)/2
n+2 n
1+4 j k
{2 P B sl
j=1 k=1
(n=1)/2  (n+1)/2
= 1+4( > i+ (k—1)
j=1 k=1
n—1n+1 9
= 144 =n".
T

Also solved by Michel Bataille, Rouen, France; Brian D. Beasley,
Presbyterian College, Clinton, SC; Ed Gray, Highland Beach, FL; Kee-Wai
Lau, Hong Kong, China; David E. Manes, Oneonta, NY; Angel Plaza,
University of Las Palmas de Gran Canaria, Spain; Henry Ricardo,
Westchester Area Math Circle, Purchase, NY; loannis D. Sfikas, National
and Kapodistrian University of Athens, Greece; David Stone and John
Hawkins, Georgia Southern University, Statesboro, GA; Nicusor Zlota,
“Traian Vuia” Technical College, Focsani, Romania, and the proposer.

5546: Proposed by Ovidiu Furdui and Alina Sintamarian, Technical University of
Cluj-Napoca, Cluj-Napoca, Romania

Calculate

2 n & k
x
Sincee®* —1—— — — —...— — = g T the proposed series, say S, is absolutely
’ k=n+1
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convergent, and

s = el 3 g
n=1 k=n+1
[e'S) ZL‘k k—1 .
— Zﬁ (_1)L5J
k=2 n=1
= 3 x—kcos (k = 2)m
B = k! ( 2 >
— ;(_1)n+1(2k)'
= 1—cosz.

Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain

22 23 e 25 26 00 a2 s e
:1§+0§_1Z+05+1ﬁ+”':_z(_1) T =1-) (-1 = 1-cosa.
i=1 i=0
Solution 3 by Kee-Wai Lau, Hong Kong, China
We show that the given sum equals 1 — cos x.
Let f(z) = sinx + cosz, so that
sinx + cos n = 0(mod 4)
£ () = cosz —sing n f 1(mod 4)
—sinxz —cosx  n = 2(mod 4)
—cosz +sinz  n=3(mod 4)
it (n) r a2 "
. n x
It follows that the given sum Zf (0) <e -1- T T n'>
n=1

According to entry 3.89 (a) on pp. 154, 227 of [1], we have

s r 22 z" ¢
Zlf(n)(o) (ex —1— T _ o n') = /O exitf(t)dt

which equals 1 — cosx, by standard integration. Our claimed result now follows easily.

Reference:
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1. O. Furdui: Limits, Series, and Fractional Part Integrals, Springer, 2013.

Solution 4 by Michel Bataille, Rouen, France

For every nonnegative integer n and any real number x, let
oo X oo n
Ro(w)=e®—1—2% 2o ...z — S~ 2andlet f(z) = Y (-1 3R, (2) be the
k=n+1 n=1
required sum. We show that f(z) =1 — cosz.

7L+lec

Let A >0 and z € [-A, A]. Sinceem:1+%+%+-~+%+m for some ¢
beteween 0 and x (Taylor-Lagrange relation), we see that
An+1
e
(n+1)!

| Rn(2)] < A
It follows that the series > (—1) 5] R, (x) is uniformly convergent on any interval
n=1
[—A, A] (A > 0). Since the derivative R],(z) is equal to R,,—1 (n € N), the same is true
of the series > (—1) ] R, (x)= > (-1) )] R,—1(z). As a result, we have

n=1 n=1
Fa)y =3 (0Bl R @) = e =14+ 3 ()3 Ry (@)
n=1 n=2
for any = € R.

Likewise, f’ is differentiable on R and for any real number z,

f”(CE) = ¥+ Z(_l)\‘%J Rn_Q(CC)

= 1+ Y (-)"*EIR(2) =1 - f(2).

n=1

Thus, f is the solution to the differential equation y” + y = 1 satisfying
f(0) =0 = f'(0). Solving is classical and we readily obtain f(z) =1 — cosz.

Solution 5 by David Stone and John Hawkins, Georgia Southern University,
Statesboro, GA

The sum of the series is 1 — cos(x).

o0 2n o0 2n
Recall the Maclaurin series for cos(z) : cos(x) = E (—1)* (; I =1+ E (—=1)* (; I
n)! n)!

n=0 n=1

As expected, we’ll also use the Maclaurin series representation for the exponential
function:

X _n
ezzz%:Ek+Rk, for any k£ > 1,
n=0
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k. n o0 n
T x
where Ej, = E — is the k** partial sum and Rj, = E — is the remainder.
n! n!
n=0 n=k+1
Because the series converges, we know that the sequence {R;}>; has limit 0.

xk—l—l

k+ D!

Note also that e* — E, = Ry, and Eyy1 — Fy =

Consider the partial sums of our given series:
i n z z? 28 z" i n

let Sy, = Zl(—1)bJ (ew_ l=g =i =3~ > =S (-plsl(e - E,).
n—=

We compute the first few partial sums.

To simplify the calculations, we first handle the sign term:

its patternis 1,—-1,-1,1,1,—-1,—-1,1,1, -1, ...

This “block of four” pattern suggests that it will be productive to consider pairing

consecutive terms (although we cannot be content with just carrying out a regrouping of
a series without a guarantee of convergence).

Xz
Slzem—Elze‘”—l—ﬁ
.%'2
,5'2—(ew—El)—(eI—Eg):Eg—Elza
ng(ex—El)—(ex—Eg)—( x—Eg)=E2—E1:SQ—R2
51;2 I4
Sp= (" —En) = (¢" — Ep) — (" = Ba) + (" —By) =S — (Ea = B3) = 5y — ¢
S5—S4+(e‘”—E5):S4+R5
$2 .',U4 .%'6
56—S4+(€x—E5)—(€z_E6):S4+(E6_E5):a—j‘i'a
S7 =S¢+ (e* — E7) = Se + Ry
.’1:2 ./,U4 x6 1’8
Sg =86+ (¥ — E7) — (e —FEg) =S¢+ (Eg — FE7) = — — — + — — —

LL‘2 1134 336 1,4142
S = o T T T
.’E2 5134 11,’6 x4k—2
Surz = or T T T sy

and for odd subscripts

Sak+1 = Sak + Rag41

Sakt3 = Sakt2 — Rakts.

We see that the subsequence {Sa; }r>1 has as its limit the Maclaurin series for 1 — cos(x).

If we had a priori knowledge that our given series is convergent, this would guarantee
that our series has sum 1 — cos(x).

However, looking at the odd-subscript partial sums will give us enough information to
draw that conclusion. The subsequence {Sax+1},>1 has as the same limit as {Sog r>1
because the sequence R,, —> 0.

Therefore, the limit of the sequence of partial sums, i.e. the sum of the given series, is
1 — cos(x).
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Also solved by Ulrich Abel, Technische Hochschule Mittelhessen, Germany;
Brian Bradie, Christopher Newport University, Newport News, VA; Ed

Gray, Highland Beach, FL; G. C. Greubel, Newport News, VA; Moti Levy,
Rehovot, Israel; Ioannis D. Sfikas, National and Kapodistrian University of
Athens, Greece; Albert Stadler, Herrliberg, Switzerland, and the proposer.
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