
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
June 15, 2010

• 5110: Proposed by Kenneth Korbin, New York, NY.

Given triangle ABC with an interior point P and with coordinates A(0, 0), B(6, 8), and
C(21, 0). The distance from point P to side AB is a, to side BC is b, and to side CA is
c where a : b : c = AB : BC : CA.

Find the coordinates of point P .

• 5111: Proposed by Michael Brozinsky, Central Islip, NY.

In Cartesianland where immortal ants live, it is mandated that any anthill must be
surrounded by a triangular fence circumscribed in a circle of unit radius. Further-
more, if the vertices of any such triangle are denoted by A,B, and C, in counter-
clockwise order, the anthill’s center must be located at the interior point P such that
6 PAB = 6 PBC = 6 PCA.

Show PA · PB · PC ≤ 1.

• 5112: Proposed by Juan-Bosco Romero Márquez, Madrid, Spain

Let 0 < a < b be real numbers with a fixed and b variable. Prove that

lim
b→a

∫ b

a

dx

ln
b+ x

a+ x

= lim
b→a

∫ b

a

dx

ln
b(a+ x)
a(b+ x)

.

• 5113: Proposed by Paolo Perfetti, Mathematics Department, Tor Vergata University,
Rome, Italy

Let x, y be positive real numbers. Prove that

2xy
x+ y

+

√
x2 + y2

2
≤ √xy +

x+ y

2
+

(
x+ y

6
−
√
xy

3

)2

2xy
x+ y

.
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• 5114: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let M be a point in the plane of triangle ABC. Prove that

MA
2 +MB

2 +MC
2

AB
2 +BC

2 + CA
2 ≥

1
3
.

When does equality hold?

• 5115: Proposed by Mohsen Soltanifar (student, University of Saskatchewan), Saskatoon,
Canada

Let G be a finite cyclic group. Compute the number of distinct composition series of G.

Solutions

• 5092: Proposed by Kenneth Korbin, New York, NY

Given equilateral triangle ABC with altitude h and with cevian CD. A circle with radius
x is inscribed in 4ACD, and a circle with radius y is inscribed in 4BCD with x < y.
Find the length of the cevian CD if x, y and h are positive integers with (x, y, h) = 1.

Solution by David Stone and John Hawkins (jointly), Statesboro, GA;

We let the length of cevian = d. Since the altitude of the equilateral triangle is h, the

length of the side AC is
2h√

3
. Let F be the center of the circle inscribed in 4ACD. Let

α = 6 ACF = 6 FCD. Therefore 6 ACD = 2α.

Let E be the point where the inscribed circle in 4ACD is tangent to side AC. Since AF
bisects the base angle of 60◦, we know that 4AEF is a 30◦− 60◦− 90◦ triangle, implying

that AE =
√

3x. Thus the length of CE is AC −AE =
2h√

3
−
√

3x =
2h− 3x√

3
.

Applying the Law of Sines in triangle 4ADC, we have

sin 2α
AD

=
sin 60◦

d
=

sin(6 ADC)
AC

. (1)

Because 6 ADC = 180◦ − 60◦ − 2α = 120◦ − 2α, we have

sin (6 ADC) = sin (120◦ − 2α)

= sin 120◦ cos 2α− cos 120◦ sin 2α

=
√

3
2

cos 2α+
1
2

sin 2α

=
√

3
2

(
cos2 α− sin2 α

)
+

1
2

(2 sinα sinα) .
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Thus from (1) we have

√
3

2d
=

[√
3
(
cos2 α− sin2 α

)
+ (2 sinα sinα)

]√
3

4h
.

Therefore, we can solve for d in terms of h and α:

d =
2h[√

3
(
cos2 α− sin2 α

)
+ (2 sinα sinα)

] .
In the right triangle 4EFC, we have

FC =

√
x2 +

(
2h− 3x√

3

)2

=

√
3x2 + 4h2 − 12hx+ 9x2

3
=

2√
3

√
3x2 + h2 − 3hx.

Thus, sinα =
√

3x
2
√

3x2 + h2 − 3hx
and cosα =

2h− 3x
2
√

3x2 + h2 − 3hx
. Therefore,

cos2α− sin2 α =
(2h− 3x)2

4 (3x2 + h2 − 3hx)
− 3x2

4 (3x2 + h2 − 3hx)

=
4h2 − 12hx+ 6x2

4 (3x2 + h2 − 3hx)
=

2h2 − 6hx+ 3x2

2 (3x2 + h2 − 3hx)
.

and 2 sinα cosα =
√

3x (2h− 3x)
2 (3x2 + h2 − 3hx)

.

Therefore the denominator in the expression for d becomes
√

3(2h2 − 6hx+ 3x2)
2 (3x2 + h2 − 3hx)

+
√

3x (2h− 3x)
2 (3x2 + h2 − 3hx)

=
√

3
2h2 − 4hx

2 (3x2 + h2 − 3hx)
.

Thus, d =
2h√

3(2h2 − 4hx)
2(3x2 + h2 − 3hx)

=
2(3x2 + h2 − 3hx)√

3(h− 2x)
.

Similarly, working in 4BCD, we can show that d =
2(3y2 + h2 − 3hy)√

3(h− 2y)
.

We note that x and y both satisfy the same equation when set equal to d. Thus for a
given value of d, the equation should have two solutions. The smaller one can be used for
x and the larger for y.

We also note that if x, h and y are integers, then d has the form d =
r√
3

, for r a rational

number. We substitute this into the equation x:

d =
2
(
3x2 + h2 − 3hx

)
√

3(h− 2x)
=

r√
3
, so
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r =
2(3x2 + h2 − 3hx)

h− 2x
.

Now we solve this for x:

rh− 2xr = 6x2 + 2h2 − 6hx

6x2 − (6h− 2r)x+ 2h2 − rh = 0

x =
6h− 2r ±

√
36h2 − 24hr + 4r2 − 48h2 + 24hr

12
=

3h− r ±
√
r2 − 3h2

6
.

Of course we would have the exact same expression for y.

Thus we take x =
3h− r −

√
r2 − 3h2

6
and y =

3h− r −
√
r2 − 3h2

6
and find h and r so

that x and y turn out to be positive integers.

Subtracting x from y gives y−x =
√
r2 − 3h2

3
. Thus we need r and h such that

√
r2 − 3h2

3
is an integer.

It must be the case that r2 − 3h2 ≥ 0, which requires 0 <
√

3h ≤ r. In addition it must
be true that

3h− r −
√
r2 − 3h2 > 0

9h2 − 6hr + r2 > r2 − 3h2

12h2 − 6hr > 0

6h(2h− r) > 0

0 < r < 2h. Thus,

√
3h ≤ r < 2h.

If we restrict our attention to integer values of r, then both h and r must be divisible by
3.

For h = 3, 6 and 9, no integer values of r divisible by 3 satisfy
√

3h ≤ r < 2h. So the first
allowable value of h is 12. Then the condition 12

√
3 ≤ r < 24 forces r = 21. From this

we find that x = 2 and y = 3 and d = 7
√

3. (Note that (2, 3, 12) = 1.)

This is only the first solution. We programmed these constraints and let MatLab check
for integer values of h and appropriate integer values of r which make x and y integers
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satisfying (x, y, h) = 1. There are many solutions:

r y x y cevian

21 12 2 3 7
√

3

78 45 9 10 26
√

3

111 60 5 18 37
√

3

114 63 7 18 38
√

3

129 72 9 20 43
√

3


Editor’s note: David and John then listed another 47 solutions. They capped their
search at h = 1000, but stated that solutions exist for values of h > 1000. They ended the
write-up of their solution with a formula for expressing the cevian in terms of x, y and h.

y − x =
√
r2 − 3h2

3

9(y − x)2 = r2 − 3h2

r2 = 3h2 + 9(y − x)2

r =
√

3h2 + 9(y − x)2

Length of cevian
r√
3

=
√
h2 + 3(y − x)2.

Ken Korbin, the proposer of this problem, gave some insights into how such a problem
can be consructed. He wrote:

Begin with any prime number P congruent to 1(mod 6). Find positive integers [a, b] such
that a2 + ab+ b2 = P 2. Construct an equilateral triangle with side a+ b and with Cevian
P . The Cevian will divide the base of the triangle into segments with lengths a and b.
Find the altitude of the triangle and the inradii of the 2 smaller triangles. Multiply the
altitude, the inradii and the Cevian P by

√
3 and then by their LCD. This should do it.

Examples: P = 7, [a, b] = [3, 5]. P = 13, [a, b] = [7, 8]. And so on.

• 5093: Proposed by Worapol Ratanapan (student), Montfort College, Chiang Mai, Thai-
land

6 = 1 + 2 + 3 is one way to partition 6, and the product of 1, 2, 3, is 6. In this case, we
call each of 1, 2, 3 a part of 6.

We denote the maximum of the product of all parts of natural number n as N(n).

As a result, N(6) = 3× 3 = 9, N(10) = 2× 2× 3× 3 = 36, and N(15) = 35 = 243.

More generally, ∀n ∈ N,N(3n) = 3n, N(3n+ 1) = 4× 3n−1, and N = (3n+ 2) = 2× 3n.
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Now let’s define R(r) in the same way as N(n), but each part of r is positive real. For
instance R(5) = 6.25 and occurs when we write 5 = 2.5 + 2.5

Evaluate the following:

i) R(2e)
ii) R(5π)

Solution by Michael N. Fried, Kibbutz Revivim, Israel

Let R(r) =
∏
i

xi, where
∑

i

xi = r and xi > 0 for all i. For any given r, find the maximum

of R(r).

Since for any given r and n the arithmetic mean of every set {xi} i = 1, 2, 3 . . . n is
r

n
by

assumption, the geometric-arithemetic mean inequality implies that

R(r) =
n∏

i=1

xi ≤
(
r

n

)n

.

Hence the maximum of R(r) is a function of n. Let us then find the maximum of the

function R(x) =
(
r

x

)x

, which is the same as the maximum of

L(x) = ln (R(x)) = x ln r − x lnx.

L(x) indeed has a single maximum at x =
r

e
.

Let m = br
e
c and M = dr

e
e. Then the maximum value of R(r) is

max

((
r

m

)m

,

(
r

M

)M
)
.

To make this concrete consider r = 5, 2e, and 5π.

For r = 5, r/e = 1.8393 . . ., so maxR(5) = max
(
5, (5/2)2

)
= max(5, 6.25) = 6.25

For r = 2e, r/e = 2, so maxR(2e) = e2.

For r = 5π, r/e = 5.7786 . . ., so maxR(5π) = max

((
5π
5

)5

,

(
5π
6

)6
)

=
(

5π
6

)6

.

Also solved by Brian D. Beasley, Clinton, SC; Paul M. Harms, North New-
ton, KS; Kee-Wai Lau, Hong Kong, China; David Stone and John Hawkins
(jointly), Statesboro, GA; The Taylor University Problem Solving Group, Up-
land, IN, and the proposer.

• 5094: Proposed by Paolo Perfetti, Mathematics Department Tor Vergata University,
Rome, Italy

Let a, b, c be real positive numbers such that a+ b+ c+ 2 = abc. Prove that

2
(
a2 + b2 + c2

)
+ 2 (a+ b+ c) ≥ (a+ b+ c)2 .
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Solution 1 by Ercole Suppa, Teramo, Italy

We will use the “magical” substitution given in “Problems from The Book” by Titu
Andreescu and Gabriel Dospinescu, which is explained in the following lemma:

If a, b, c are positive real numbers such that a + b + c + 2 = abc, then there exists three
real numbers x, y, z > 0 such that

a =
y + z

x
, b =

z + x

y
, and c =

x + y
z

. (∗)

Proof: By means of a simple computation the condition a+ b+ c+2 = abc can be written
in the following equivalent form

1
1 + a

+
1

1 + b
+

1
1 + c

= 1.

Now if we take
x =

1
1 + a

, y =
1

1 + b
, and z =

1
1 + c

,

then x+ y+ z = 1 and a =
1− x
x

=
y + z

x
. Of course, in the same way we find b =

z + x

y

and c =
x+ y

z
.

By using the substitution (∗), after some calculations, the given inequality rewrites as

z4(x− y)2 + x4(y − z)2 + y4(x− z)2 + 2(x3y3 + x3z3 + y3z3 − 3x2y2z2)
x2y2z2

≥ 0,

which is true since
x3y3 + x3z3 + y3z3 ≥ 3x2y2z2

by virtue of the AM-GM inequality.

Solution 2 by Shai Covo, Kiryat-Ono, Israel

First let x = a+ b and y = ab. Hence x ≥ 2
√
y.

From a+ b+ c+ 2 = abc, we have c =
x+ 2
y − 1

. Hence, y > 1.

Noting that x2 − 2y = a2 + b2, it follows readily that the original inequality can be
rewritten as

(y − 2)2 x2 + 2
(
y2 − 3y + 4

)
x− 4y3 + 8y2 ≥ 0, (1)

where y > 1 and x ≥ 2
√
y. For y > 1 arbitrary but fixed, we denote by fy(x), for x ≥ 2

√
y,

the function on the left-hand side of (1).

Trivially, fy(x) ≥ 0 for y = 2. For y 6= 2 (which we henceforth assume), fy(·), when ex-

tended to <, is a quadratic function (parabola) attaining its minimum at x0 =
−
(
y2 − 3y + 4)
(y − 2)2

.

Noting that x0 < 0, it follows that

min
{x:x≥2

√
y}
fy(x) = fy(2

√
y)
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= 4
√
y
(
y2 − 3y + 4− 2y3/2 + 4

√
y
)
.

Thus the inequality (1) will be proved if we show that

ϕ(y) := y2 − 3y + 4− 2y3/2 + 4
√
y ≥ 0. (2)

This is trivial for 1 < y < 2 since in this case both y2 − 3y + 4 and −2y3/2 + 4
√
y are

greater than 0.
For y > 2, it is readily seen that ϕ′′(y) > 0. Hence, ϕ′(y) is increasing for y > 2. Noting
that ϕ′(4) = 0, it thus follows that min{y>2} ϕ(y) = ϕ(4). Since ϕ(4) = 0, inequality (2)
is proved.

Solution 3 by Kee-Wai Lau, Hong Kong, China

Firstly, we have

2(a2 + b2 + c2) + 2(a+ b+ c)− (a+ b+ c)2 = (a+ b+ c)(a+ b+ c+ 2)− 4(ab+ bc+ ca)

Let p = a+ b+ c, q = ab+ bc+ ca, r = abc , so that r = p+ 2.

We need to show that q ≤ p(p+ 2)
4

(1)

It is well known that a, b, and c are the positive real roots of the cubic equation

x3 − px2 + qx− r = 0 if, and only if,

p2q2 − 4p3r + 18pqr − 4q3 − 27r2 ≥ 0.

By substituting r = p + 2 and simplifying, we reduce the last inequality to f(q) ≤ 0,
where

f(q) = 4q3 − p2q2 −
(
36p+ 18p2

)
q + 4p4 + 8p3 + 27p2 + 108p+ 108

= (q + 2p+ 3)
(
4q2 − (p2 + 8p+ 12)q + 2p3 + p2 + 12p+ 36

)
. Thus

4q2 − (p2 + 8p+ 12)q + 2p3 + p2 + 12p+ 36 ≤ 0. (2)

By the arithmetic mean-geometric inequality we have
abc = a+ b+ c+ 2 ≥ 4(2abc)1/4 so that abc ≥ 8 and p = a+ b+ c ≥ 6.

From (2) we obtain q ≤ 1
8

(
p2 + 8p+ 12 +

√
(p+ 2)(p− 6)3

)
and it remains to show that

1
8

(
p2 + 8p+ 12 +

√
(p+ 2)(p− 6)3

)
≤ p(p+ 2)

4
. (3)

Now (3) is equivalent to
√

(p+ 2)(p− 63)≤ (p− 6)(p+ 2) or, on squaring both sides and
simplifying, −8(p+ 2)(p− 6)2 ≤ 0.
Since the last inequality is clearly true, we see that (1) is true, and this completes the
solution.

Also solved by Tom Leong, Scotrun, PA; Bruno Salgueiro Fanego, Viveiro,
Spain, and the proposer.
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• 5095: Proposed by Zdravko F. Starc, Vršac, Serbia

Let Fn be the Fibonacci numbers defined by

F1 = F2 = 1, Fn+2 = Fn+1 + Fn (n = 1, 2, · · ·).

Prove that √
Fn−2Fn−1 + 1 ≤ Fn ≤

√
(n− 2)Fn−2Fn−1 + 1 (n = 3, 4, · · ·).

Solution 1 by Valmir Bucaj (student, Texas Lutheran University), Seguin, TX

First, using mathematical induction, we show that

F 2
n = Fn−1Fn+1 + (−1)n+1, for n = 2 , 3 , . . . (2 ).

For n = 2 we have:
F 2

2 = 1 = 1 · 2− 1 = F1F3 + (−1)3.

Assume that (2) holds for n. We show that it is true also for n+ 1.

FnFn+2 + (−1)n+2 = Fn (Fn + Fn+1) + (−1)n+2

= F 2
n + FnFn+1 + (−1)n+2

= Fn−1Fn+1 + FnFn+1 + (−1)n+1 + (−1)n+2

= Fn+1 (Fn−1 + Fn) = F 2
n+1.

So (2) hold for any n ≥ 2.

Next we show that, √
Fn−2Fn−1 + 1 ≤ Fn, holds.

By applying (2) several times we obtain:

F 2
n = Fn−1Fn+1 + (−1)n+1

= Fn−1 (Fn + Fn−1) + (−1)n+1

= Fn−1Fn + F 2
n−1 + (−1)n+1

= Fn−1Fn + Fn−2Fn + (−1)n + (−1)n+1

= Fn−1Fn + Fn−2Fn−1 + F 2
n−2

= 2Fn−1Fn−2 + Fn−2Fn + F 2
n−2 + (−1)n+1

= 3Fn−1Fn−2 + 2F 2
n−2 + (−1)n+1

= Fn−1Fn−2 + 2Fn−1Fn−2 + 2F 2
n−2 + (−1)n+1
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≥ Fn−1Fn−2 + 2
√
Fn−1Fn−2 + 1

=
(√

Fn−1Fn−2 + 1
)2

Taking the square root of both sides we obtain:

Fn ≥
√
Fn−1Fn−2 + 1,

which is the first part of (1).

To prove the second part of (1), we proceed similarly. That is:

F 2
n = Fn−1Fn+1 + (−1)n+1

= Fn−1 (Fn + Fn−1) + (−1)n+1

= Fn−1Fn + F 2
n−1 + (−1)n+1

= Fn−1Fn + Fn−2Fn + (−1)n + (−1)n+1

= Fn−1Fn + Fn−2Fn−1 + F 2
n−2

= 2Fn−1Fn−2 + Fn−2Fn + F 2
n−2 + (−1)n+1

= 3Fn−1Fn−2 + 2F 2
n−2 + (−1)n+1

≤ 3Fn−1Fn−2 + 2Fn−1Fn−2 + 1

= 5Fn−1Fn−2 + 1

≤ (n− 2)Fn−1Fn−2 + 1 for n ≥ 7.

Taking the square root of both sides we obtain:

Fn ≤
√

(n− 2)Fn−1Fn−2 + 1 ≤
√

(n− 2)Fn−1Fn−2 + 1, (4)

which proves the second part of (1) for n ≥ 7.

On can easily show that (4) also holds for n = 3, 4, 5, and 6 by checking each of these
cases separately. So combining (3) and (4) we have proved that:√

Fn−2Fn−1 + 1 ≤ Fn ≤
√

(n− 2)Fn−2Fn−1 + 1 (n = 3, 4, · · ·).

Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain

Given n = 3, 4, · · · , we can use (because all the Fn are positive) the Geometric Mean-
Arithmetic Mean Inequality applied to Fi, i = n−1, n−2, the facts that Fn = Fn−1+Fn−2

and Fn ≥ 2 with equality if, and only if, n = 3, to obtain:√
Fn−2Fn−1 + 1 ≤ Fn−2 + Fn−1

2
+ 1 =

Fn

2
+ 1 ≤ Fn,
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which is the first inequality to prove, with equality if, and only if, n = 3.

The second inequality, if n = 3, 4, · · · can be proved using that Fn =
n−2∑
i=1

Fi + 1, the

Quadratic Mean-Arithmetic Mean inequality applied to the positive numbers Fi, i =

1, 2, · · · , n− 2, and that Fn−2Fn−1 =
n−2∑
i=1

F 2
i , because

Fn =
n−2∑
i=1

Fi + 1 ≤

√√√√(n− 2)
n−2∑
i=1

F 2
i + 1 =

√
(n− 2)Fn−2Fn−1 + 1,

with equality if, and only if, n = 3 or n = 4.

Solution 3 by Shai Covo, Kiryat-Ono, Israel

The left inequality is trivial. Indeed, for any n ≥ 3,√
Fn−2Fn−1 + 1 ≤

√
Fn−1Fn−1 + Fn−2 = Fn.

As for the right inequality, the result is readily seen to hold for n = 3, 4, 5, 6. Hence, it
suffices to show that for any n ≥ 7 the following inequality holds:

Fn = Fn−2 + Fn−1 <
√

5Fn−2Fn−1.

With x and y playing the role of Fn−2 and Fn−1 (n ≥ 7), respectively, it thus suffices to
show that x+ y <

√
5xy, subject to x < y < 2x (x ≥ F5 = 5).

It is readily checked that, for any fixed x > 0 (real), the function φx(y) =
√

5xy− (x+ y),
defined for y ∈ [x, 2x], has a global minimum at y = 2x, where φx(y) = (

√
10− 3)x > 0.

The result is now established.

Solution 4 by Brian D. Beasley, Clinton, SC

Let Ln = α
√
αFn−2Fn−1 − 1 and Un = α

√
αFn−2Fn−1 + 1, where α = (1 +

√
5)/2. We

prove the stronger inequalities Ln ≤ Fn ≤ Un for n ≥ 3, with improved lower bound for
n ≥ 5 and improved upper bound for n ≥ 7.

First, we note that the inequalities given in the original problem hold for 3 ≤ n ≤ 6. Next,
we apply induction on n, verifying that L3 ≤ F3 ≤ U3 and assuming that Ln ≤ Fn ≤ Un

for some n ≥ 3. Then (Fn − 1)2 ≤ α3Fn−2Fn−1 ≤ (Fn + 1)2, which implies

(Fn+1 − 1)2 = (Fn − 1)2 + 2Fn−1(Fn − 1) + F 2
n−1 ≤ α3Fn−2Fn−1 + 2Fn−1(Fn − 1) + F 2

n−1

and

(Fn+1 + 1)2 = (Fn + 1)2 + 2Fn−1(Fn + 1) +F 2
n−1 ≥ α3Fn−2Fn−1 + 2Fn−1(Fn + 1) +F 2

n−1.

Since α3Fn−1Fn = α3Fn−2Fn−1 + α3F 2
n−1, it suffices to show that

2Fn−1(Fn − 1) + F 2
n−1 ≤ α3F 2

n−1 ≤ 2Fn−1(Fn + 1) + F 2
n−1,

that is, 2(Fn − 1) + Fn−1 ≤ α3Fn−1 ≤ 2(Fn + 1) + Fn−1. Using the Binet formula
Fn = (αn − βn)/

√
5, where β = (1 −

√
5)/2, these latter inequalities are equivalent to

2βn−1 − 2 ≤ 0 ≤ 2βn−1 + 2, both of which hold since −1 < β < 0. (We also used the
identities 2α+ 1− α3 = 0 and α3 − 1− 2β = 2

√
5.)
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Finally, we note that Un is smaller than the original upper bound for n ≥ 7, since α3 +2 <
7. Also, a quick check verifies that Ln is larger than the original lower bound for n ≥ 5;
this requires

(α3 − 1)2(Fn−2Fn−1)2 − 8(α3 + 1)Fn−2Fn−1 + 16 ≥ 0,

which holds if Fn−2Fn−1 ≥ 4.
Also solved by Paul M. Harms, North Newton, KS; Tom Leong, Scotrun, PA;
Boris Rays, Brooklyn NY; David Stone and John Hawkins (jointly), States-
boro, GA, and the proposer.

• 5096: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let a, b, c be positive real numbers. Prove that

a

b+ 4
√
ab3

+
b

c+ 4
√
bc3

+
c

a+ 4
√
ca3
≥ 3

2
.

Solution 1 by Ovidiu Furdui, Cluj, Romania

We have, since 4
√
xy3 ≤ x+ 3y

4
, that

∑
cyclic

a

b+ 4
√
ab3
≥ 4

∑
cyclic

a

7b+ a
= 4

∑
cyclic

a2

7ba+ a2
≥ 4

(a+ b+ c)2∑
a2 + 7

∑
ab
,

and hence it suffices to prove that

8(a+ b+ c)2 ≥ 3(a2 + b2 + c2) + 21(ab+ bc+ ca).

However, the last inequality reduces to proving that

a2 + b2 + c2 ≥ ab+ bc+ ca,

and the problem is solved since the preceding inequality holds for all real a, b, and c.

Solution 2 by Ercole Suppa, Teramo, Italy

By the weighted AM-GM inequality we have

a

b+ 4
√
ab3

+
b

c+ 4
√
bc3

+
c

a+ 4
√
ca3

≥ a

b+
1
4
a+

3
4
b

+
b

c+
1
4
b+

3
4
c

+
c

a+
1
4
c+

3
4
a

=
4a

a+ 7b
+

4b
b+ 7c

+
4c

c+ 7a
.

So it suffices to prove that

a

a+ 7b
+

b

b+ 7c
+

c

c+ 7a
≥ 3

8
.
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This inequality is equivalent to

7(13a2b+ 13b2c+ 13ac2 + 35ab2 + 35a2c+ 35bc2 − 144abc)
8(a+ 7b)(b+ 7c)(c+ 7a)

≥ 0

which is true. Indeed according to the AM-GM inequality we obtain

13a2b+ 13b2c+ 13ac2 ≥ 13 · 3 · 3
√
a3b3c3 = 39abc

35ab2 + 35a2c+ 35bc2 ≥ 35 · 3 · 3
√
a3b3c3 = 105abc

and, summing these inequalities we obtain:

13a2b+ 35ab2 + 35a2c+ 13b2c+ 13ac2 + 35bc2 ≥ 144abc.

This ends the proof. Clearly, equality occurs for a = b = c.

Solution 3 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, San An-
gelo, TX

We start by considering the function

f(t) =
1

et + e
3
4
t

on <. Then for all t ∈ <,

f ′′(t) =
16e2t + 23e

7
4
t + 9e

3
2
t

16
(
et + e

3
4
t
)3 > 0,

and hence, f(t) is strictly convex on <.

If x = ln
(
b

a

)
, y = ln

(
b

a

)
, and z = ln

(
b

a

)
, then

x+ y + z = ln
(
b

a
· c
b
· a
c

)
= ln 1 = 0.

By Jensen’s Theorem,

a

b+ 4
√
ab3

+
b

c+ 4
√
bc3

+
c

a+ 4
√
ca3

=
1(

b

a

)
+
(
b

a

)3/4
+

1(
c

b

)
+
(
c

b

)3/4
+

1(
a

c

)
+
(
a

c

)3/4

= f(x) + f(y) + f(z)

≥ 3f
(
x+ y + z

3

)
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= 3f(0)

=
3
2
.

Further, equality is attained if, and only if, x = y = z = 0, i.e., if, and only if, a = b = c.

Solution 4 by Shai Covo, Kiryat-Ono, Israel

Let us first represent b and c as b = xa and c = yxa, where x and y are arbitrary positive
real numbers. By doing so, the original inequality becomes

1
x+ x3/4

+
1

y + y3/4
+

yx

1 + (yx)1/4
≥ 3

2
. (1)

Let us denote by f(x, y) the expression on the left-hand side of this inequality. Clearly,
f(x, y) has a global minimum at some point (α, β) ∈ (0,∞)×(0,∞), a priori not necessar-
ily unique. This point is, in particular, a critical point of f ; that is, fx(α, β) = fy(α, β) =
0, where fx and fy denote the partial derivatives of f with respect to x and y. Calculating
derivatives, the conditions fx(α, β) = 0 and fy(α, β) = 0 imply that

1 + 3
4α
−1/4(

α+ α3/4
)2 =

β
[
1 + 3

4(βα)1/4
]

[
1 + (βα)1/4

]2 and

1 + 3
4β
−1/4(

β + β3/4
)2 =

α
[
1 + 3

4(βα)1/4
]

[
1 + (βα)1/4

]2
, (2)

respectively. From this it follows straight forwardly, that

1 + 3
4α
−1/4

α
(
1 + α−1/4

)2 =
1 + 3

4β
−1/4

β
(
1 + β−1/4

)2 .
Writing this equality as ϕ(α) = ϕ(β) and noting that ϕ is strictly decreasing, we conclude
(by virtue of ϕ being one-to-one) that α = β. Substituting this into (2) gives

1 + 3
4α
−1/4(

α+ α3/4
)2 =

α
(
1 + 3

4α
1/2
)

(
1 + α1/2

)2 .

Comparing the numerators and denominators of this equation shows that the right-hand
side is greater than the left-hand side for α > 1, while the opposite is true for α < 1.
We conclude that α = β = 1. Thus f has a unique global minimum at (x, y) = (1, 1),
where f(x, y) = 3/2. The inequality (1), and hence the one stated in the problem, is thus
proved.

Also solved by Valmir Bucaj (student, Texas Lutheran University), Seguin,
TX; Bruno Salgueiro Fanego, Viveiro, Spain; Kee-Wai Lau, Hong Kong,
China; Tom Leong, Scotrun, PA; Paolo Perfetti, Mathematics Department
Tor Vergata University, Rome, Italy, and the proposer.
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• 5097: Proposed by Ovidiu Furdui, Cluj, Romania

Let p ≥ 2 be a natural number. Find the sum

∞∑
n=1

(−1)n

b p
√
nc
,

where bac denotes the floor of a. (Example b2.4c = 2).

Solution 1 by Paul M. Harms, North Newton, KS

Since the series is an alternating series it is important to check whether the number of
terms with the same denominator is even or odd. It is shown below that the number of
terms with the same denominator is an odd number.

Consider p=2. The series starts:

(−1)1

1
+

(−1)2

1
+

(−1)3

1
+

(−1)4

1
+ . . .+

(−1)8

2
+

(−1)9

3
+ . . .

=
(−1)3

1
+

(−1)8

2
(−1)15

3
+ . . .

= −1 +
1
2
− 1

3
+ . . . .

The terms with 1 in the denominator are from n = 12 up to (not including) n = 22, and
the terms with 2 in the denominator come from n = 22 up to n = 32. The number of
terms with 1 in the denominator is 22 − 12 = 3 terms.

For p = 2 the number of terms with a positive integer m in the denominator is (m+ 1)2−
m2 = 2m+ 1 terms which is an odd number of terms.

For a general positive integer p, the number of terms with a positive integer m in the
denominator is (m+ 1)p −mp terms. Either (m+ 1) is even and m is odd or vice versa.
An odd integer raised to a positive power is an odd integer, and an even integer raised
to a positive power is an even integer. Then (m + 1)p −mp is the difference of an even
integer and an odd integer which is an odd integer. Since, for every positive integer p the

series starts with
(−1)1

1
= −1 and we have an odd number of terms with denominator 1,

the last term with 1 in the denominator is
−1
1

and the other terms cancel out.

The terms with denominator 2 start and end with positive terms. They all cancel out

except the last term of
1
2

.

Terms with denominator 3 start and end with negative terms. For every p we have the
series

−1
1

+
1
2
− 1

3
+

1
4
− 1

5
+ . . . = − ln 2.

Solution 2 by The Taylor University Problem Solving Group, Upland, IN
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First note that the denominators of the terms of this series will be increasing natural
numbers, because p

√
n will always be a real number greater than or equal to 1 for n ≥ 1,

meaning that its floor will be a natural number. Furthermore, for a natural number a,
ap is the smallest n for which a is the denominator, because b p

√
apc = bac = a. In other

words, the denominator increases by 1 each time n is a perfect pth power. Thus, a natural
number k occurs as the denominator (k+1)p−kp times in the series. Because multiplying
a number by itself preserves parity and k+ 1 and k always have opposite parity, (k+ 1)p

and kp also have opposite parity, hence their difference is odd. So each denominator
occurs an odd number of times. Because the numberator alternates between 1 and -1,
all but the last of the terms with the same denominator will cancel each other out. This
leaves an alternating harmonic series with a negative first term, which converges to − ln 2.

This can be demonstrated by the fact that the alternating harmonic series with a positive
first term is the Mercator series evaluated at x = 1, and this series is simply the opposite
of that.

Incidentally, this property holds for p = 1 as well.

Also solved by Shai Covo, Kiryat-Ono, Israel; Bruno Salgueiro Fanego, Viveiro,
Spain; Kee-Wai Lau, Hong Kong, China; Paolo Perfetti, Mathematics Depart-
ment Tor Vergata University, Rome, Italy; David Stone and John Hawkins
(jointly), Statesboro, GA; Ercole Suppa, Teramo, Italy, and the proposer.
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