
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
February 15, 2010

• 5086: Proposed by Kenneth Korbin, New York, NY

Find the value of the sum
2
3

+
8
9

+ · · ·+ 2N2

3N
.

• 5087: Proposed by Kenneth Korbin, New York, NY

Given positive integers a, b, c, and d such that (a + b + c + d)2 = 2(a2 + b2 + c2 + d2)
with a < b < c < d. Rationalize and simplify

√
x + y −

√
x√

x + y +
√

x
if

{
x = bc + bd + cd, and
y = ab + ac + ad.

• 5088: Proposed by Isabel Iriberri Dı́az and José Luis Dı́az-Barrero, Barcelona, Spain

Let a, b be positive integers. Prove that

ϕ(ab)√
ϕ2(a2) + ϕ2(b2)

≤
√

2
2

,

where ϕ(n) is Euler’s totient function.

• 5089: Proposed by Panagiote Ligouras, Alberobello, Italy

In 4ABC let AB = c,BC = a,CA = b, r = the in-radius and ra, rb, and rc= the
ex-radii, respectively.
Prove or disprove that

(ra − r)(rb + rc)
rarc + rrb

+
(rc − r)(ra + rb)

rcrb + rra
+

(rb − r)(rc + ra)
rbra + rrc

≥ 2
(

ab

b2 + ca
+

bc

c2 + ab
+

ca

a2 + bc

)
.

• 5090: Proposed by Mohsen Soltanifar (student), University of Saskatchewan, Canada

Given a prime number p and a natural number n. Calculate the number of elementary
matrices En×n over the field Zp.

• 5091: Proposed by Ovidiu Furdui, Cluj, Romania
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Let k, p ≥ 0 be nonnegative integers. Evaluate the integral∫ π/2

−π/2

sin2p x

1 + sin2k+1 x +
√

1 + sin4k+2 x
dx.

Solutions

• 5068: Proposed by Kenneth Korbin, New York, NY.

Find the value of √
1 + 2009

√
1 + 2010

√
1 + 2011

√
1 + · · ·.

Solution by Dmitri V. Skjorshammer (student, Harvey Mudd College),
Claremont, CA

To solve this, we apply Ramanujan’s nested radical. Consider the identity
(x + n)2 = x2 + 2nx + n2, which can be rewritten as

x + n =
√

n2 + x((x + n) + n).

Now, the (x + n) + n term has the same form as the left-hand side, so we can write it in
terms of a radical:

x + n =
√

n2 + x
√

n2 + (x + n)((x + 2n) + n)

Repeating this process, ad infinitum, yields Ramanujan’s nested radical:

x + n =

√
n2 + x

√
n2 + (x + n)

√
n2 + · · ·

With n = 1 and x = 2009, the right-hand side becomes the expression in the problem. It
follows that the value is 2010.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Pat Costello,
Richmond, KY; Michael N. Fried, Kibbutz Revivim, Israel; David E. Manes,
Oneonta, NY; Paolo Perfetti, Department of Mathematics, University Tor
Vergata, Rome, Italy; David Stone and John Hawkins (jointly), Statesboro,
GA; Nguyen Van Vinh (student, Belarusian State University), Minsk,
Belarus, and the proposer.

• 5069: Proposed by Kenneth Korbin, New York, NY.

Four circles having radii
1
14

,
1
15

,
1
x

and
1
y

respectively, are placed so that each of the

circles is tangent to the other three circles. Find positive integers x and y with
15 < x < y < 300.

Solution by Bruno Salgueiro Fanego, Viveiro, Spain
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If all the circles are tangent in a point, the problem is not interesting because x and y
can take on any value for which 15 < x < y < 300. So we assume that the circles are not
mutually tangent at a point.
By Descarte’s circle theorem with ε1, ε2 and ε3 being the curvature of the first three
circles, the curvature ε4 of the fourth circle can be obtained with Soddy’s formula:

ε4 = ε1 + ε2 + ε3 ± 2
√

ε1ε2 + ε2ε3 + ε3ε1, that is,

y = 14 + 15 + x± 2
√

14 · 15 + 15 · x + x · 14

y = 29 + x +±2
√

210 + 29x

Then, 210 + 29x must be a perfect square, say a2. Since, 15 < x < 300,

252 < 210 + 29x < 952, so

26 ≤ a ≤ 94.

Thus,

29
∣∣∣∣(a2 − 210).

The only integers a, 26 ≤ a ≤ 94, which satisfy this condition are 35, 52, 64, 81, and 93.
Taking into account that 15 < x < y < 300, we have:

For a = 35, x = 35 and so y = 29 + x ± 2a = 134
For a = 52, x = 86 and y = 219 ;
For a = 64, x = 134 and y = 291 ;

and for a ∈ {81, 93}, none of the obtained values of y is valid.

Thus the only pairs of integers x and y with 15 < x < y < 300 are

(x, y) ∈
{

(35, 134), (86, 219), (134, 291)
}

.

Also solved by Michael N. Fried, Kibbutz Revivim, Israel; Paul M. Harms,
North Newton, KS; John Hawkins and David Stone (jointly), Statesboro,
GA; Antonio Ledesma Vila, Requena-Valencia, Spain, and the proposer.

• 5070: Proposed by Isabel Iriberri Dı́az and José Luis Dı́az- Barrero, Barcelona, Spain.

Find all real solutions to the system

9(x2
1 + x2

2 − x2
3) = 6x3 − 1,

9(x2
2 + x2

3 − x2
4) = 6x4 − 1,

. . . . . . . . .
9(x2

n + x2
1 − x2

2) = 6x2 − 1.


Solution by Antonio Ledesma Vila, Requena -Valencia, Spain
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Add all

9(x2
1 + x2

2 − x2
3) = 6x3 − 1

9(x2
2 + x2

3 − x2
4) = 6x4 − 1

· · ·
9(x2

n + x2
1 − x2

2) = 6x2 − 1

9

(
n∑

i=1

x2
i +

n∑
i=1

x2
i −

n∑
i=1

x2
i

)
= 6

n∑
i=1

xi − n

9
n∑

i=1

x2
i = 6

n∑
i=1

xi − n

n∑
i=1

(3xi)
2 = 2

n∑
i=1

(3xi)− n

n∑
i=1

(3xi)
2 − 2

n∑
i=1

(3xi) + n = 0

n∑
i=1

(3xi − 1)2 = 0,

xi =
1
3

for all i

Also solved by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie
(jointly), San Angelo, TX; Bruno Salgueiro Fanego, Viveiro, Spain; Kee-Wai
Lau, Hong Kong; China; David E. Manes, Oneonta, NY; John Nord,
Spokane, WA; Paolo Perfetti, Department of Mathematics, University Tor
Vergata, Rome, Italy; Boris Rays, Brooklyn, NY; Dmitri V. Skjorshammer
(student, Harvey Mudd College), Claremont, CA, and the proposer.

• 5071: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let ha, hb, hc be the altitudes of 4ABC with semi-perimeter s, in-radius r and
circum-radius R, respectively. Prove that

1
4

(
s(2s− a)

ha
+

s(2s− b)
hb

+
s(2s− c)

hc

)
≤ R2

r

(
sin2 A + sin2 B + sin2 C

)
.

Solution by Charles McCracken, Dayton, OH

Multiply both sides of the inequality by 4 to obtain

s(2s− a)
ha

+
s(2s− b)

hb
+

s(2s− c)
hc

≤ (2R)2

r

[
sin2 A + sin2 B + sin2 C

]

s(2s− a)
ha

+
s(2s− b)

hb
+

s(2s− c)
hc

≤ 1
r

[
(2R)2 sin2 A + (2R)2 sin2 B + (2R)2 sin2 C

]
.
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Now 2R =
a

sinA
=

b

sin B
=

c

sinC
so the inequality becomes

s(2s− a)
ha

+
s(2s− b)

hb
+

s(2s− c)
hc

≤ 1
r

(
a2 + b2 + c2

)
.

From Johnson (Roger A. Johnson, Advanced Euclidean Geometry, Dover, 2007, p. 11)
we have

ha =
2∆
a

, hb =
2∆
b

, hc =
2∆
c

, where ∆ represents the area of the triangle.

The inequality now takes the form

as(2s− a)
2∆

+
bs(2s− b)

2∆
+

cs(2s− c)
2∆

≤ 1
r

(
a2 + b2 + c2

)
.

Since ∆ = rs, we now have our inequality in the form

as(2s− a)
2rs

+
bs(2s− b)

2rs
+

cs(2s− c)
2rs

≤ 1
r

(
a2 + b2 + c2

)

a(2s− a)
2

+
b(2s− b)

2
+

c(2s− c)
2

≤
(

a2 + b2 + c2
)

Substituting a + b + c for 2s we have

a(b + c) + b(c + a) + c(a + b) ≤ 2a2 + 2b2 + 2c2

ab + ac + bc + ba + ca + cb ≤ 2a2 + 2b2 + 2c2

ab + bc + ca ≤ a2 + b2 + c2

This last inequality, ab + bc + ca ≤ a2 + b2 + c2, can be readily proved true for any triple
of positive numbers a, b, c by letting b = a + δ and c = a + ε with 0 < δ < ε. Hence the
original inequality holds.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Paul M. Harms,
North Newton, KS; Kee-Wai Lau, Hong Kong, China; Boris Rays, Brooklyn,
NY; David Stone and John Hawkins (jointly), Statesboro, GA, and the
proposer.

• 5072: Proposed by Panagiote Ligouras, Alberobello, Italy.

Let a, b and c be the sides, la, lb, lc the bisectors, ma,mb,mc the medians, and ha, hb, hc

the heights of 4ABC. Prove or disprove that

a)
(−a + b + c)3

a
+

(a− b + c)3

b
+

(a + b− c)3

c
≥ 4

3

(
ma · la + lb · hb + hc ·mc

)
b) 3

∑
cyc

(−a + b + c)3

a
≥ 2

∑
cyc

[ma(la + ha)].
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Solution by proposer

We have

(−a + b + c)3

a
+

(a− b + c)3

b
+

(a + b− c)3

c
≥ a2 + b2 + c2. (1)

In fact, the equality is homogeneous and putting a + b = c = 1 gives

(−a + b + c)3

a
+

(a− b + c)3

b
+

(a + b− c)3

c
≥ a2 + b2 + c2 ⇔

∑
cyc

(1− 2a)3

a
≥
∑
cyc

a2. (2)

Applying Chebyshev’s Inequality gives

∑
cyc

(1− 2a)3

a
=
∑
cyc

1
a
(1− 2a)3 ≥ 1

3

(∑
cyc

1
a

)
·
[∑

cyc

(1− 2a)3
]
. (3)

Using the well known equalities

∑
x3 =

(∑
x

)3

− 3(x + y)(y + z)(z + x). (4)

(a + b + c)
(

1
a

+
1
b

+
1
c

)
≥ 32 = 9 (5)

and applying (4), (3), and (5) we have

∑
cyc

(1− 2a)3

a
≥ 1

3

(∑
cyc

1
a

)
·
[∑

cyc

(1− 2a)3
]

=
1
3

(∑
cyc

1
a

)
·
[
(1− 2a + 1− 2b + 1− 2c)3 − 3(1− 2a + 1− 2b)(1− 2b + 1− 2c)(1− 2c + 1− 2a)

]

=
1
3

(∑
cyc

1
a

)
· [1− 24abc]

=
1
3

(∑
cyc

1
a

)
· (
∑

a)− 24
3

(∑
cyc

ab

)

≥ 1
3
· 9− 8

(∑
cyc

ab

)

⇔
∑
cyc

(1− 2a)3

a
≥ 3− 8

(∑
cyc

ab

)
. (6)

We have
3− 8

(∑
cyc

ab

)
≥
∑
cyc

a2. (7)

In fact,

3− 8
(∑

cyc

ab

)
≥
∑
cyc

a2 ⇔ 3− 6
(∑

cyc

ab

)
≥
∑
cyc

a2 + 2
(∑

cyc

ab

)
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⇔ 3− 6
(∑

cyc

ab

)
≥
(∑

cyc

a

)2

= 1 ⇔ 3− 6
(∑

cyc

ab

)
≥ 1− 3

⇔
∑
cyc

ab ≤ 1
3

=

(∑
a

)2

3

⇔
∑
cyc

(a− b)2 ≥ 0, and this last statement is true.

Using (6) and (7) we have

∑
cyc

(1− 2a)3

a
≥ 3− 8

(∑
cyc

ab

)
≥
∑
cyc

a2

⇔
∑
cyc

(1− 2a)3

a
≥
∑
cyc

a2, and (1) is true.

Is well known that

a2 + b2 = 2m2
c +

1
2
c2 (A)

c2 + b2 = 2m2
a +

1
2
a2 (B)

c2 + a2 = 2m2
b +

1
2
b2 (C)

For (A),(B), and (C)

m2
a + m2

b + m2
c =

3
4
(a2 + b2 + c2) and

a2 + b2 + c2 =
4
3
(m2

a + m2
b + m2

c) (8)

It is also well known that

ma ≥ la ≥ ha, mb ≥ lb ≥ hb, mc ≥ lc ≥ hc. (9)

Using (9) we have

m2
a ≥ ma · la ≥ ma · ha, m2

b ≥ mb · lb ≥ mb · hb, m2
c ≥ mc · lc ≥ mc · hc (D)

m2
a ≥ la · ha, m2

b ≥ lb · hb, m2
c ≥ lc · hc, (E)

Using (8) and (D) we have

a2 + b2 + c2 ≥ 4
3
(mala + mblb + mclc). (10)
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a2 + b2 + c2 ≥ 4
3
(maha + mbhb + mchc). (11)

And using (8), (D), and (E) we have

a2 + b2 + c2 ≥ 4
3
(mala + lbhb + hcmc). (12)

For part a of the problem, using (1) and (12) we have

(−a + b + c)3

a
+

(a− b + c)3

b
+

(a + b− c)3

c
≥ 4

3

(
ma · la + lb · hb + hc ·mc

)
For part b of the problem, using (1), (10) and (11) we have

2
[
(−a + b + c)3

a
+

(a− b + c)3

b
+

(a + b− c)3

c

]
≥

4
3

(
ma · la + mb · lb + mc · lc

)
+

4
3

(
ma · ha + mb · hb + mc · hc

)

⇔ (−a + b + c)3

a
+

(a− b + c)3

b
+

(a + b− c)3

c

≥ 2
3

(
ma · la + mb · lb + mc · lc + ma · ha + mb · hb + mc · hc

)

⇔ (−a + b + c)3

a
+

(a− b + c)3

b
+

(a + b− c)3

c

≥ 2
3

[
ma · (la + ha) + mb · (lb + hb) + mc · (lc + hc)

]

• 5073: Proposed by Ovidiu Furdui, Campia-Turzii, Cluj, Romania.

Let m > −1 be a real number. Evaluate∫ 1

0
{lnx}xmdx,

where {a} = a− [a] denotes the fractional part of a.

Solution 1 by Bruno Salgueiro Fanego, Viveiro, Spain

Im =
∫ 1

0
{lnx}xmdx =

∫ 1

0
(lnx− [lnx])xmdx =

∫ 1

0
(lnx)xmdx−

∫ 1

0
[lnx]xmdx = A−B

where A =
∫ 1

0
(lnx)xmdx and B =

∫ 1

0
[lnx]xmdx. Integrating by parts( ∫

udv = uv −
∫

vdu with u = ln x and dv = xmdx

)
, and by using Barrow’s and

L’Hospital’s rule we obtain,∫
(lnx)xmdx =

(lnx)xm+1

m + 1
−
∫

xm

m + 1
dx =

(lnx)xm+1

m + 1
− xm+1

(m + 1)2
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=⇒ A =
(lnx)xm+1

m + 1
− xm+1

(m + 1)2

∣∣∣∣1
0

=
(ln 1)1m+1

m + 1
− 1m+1

(m + 1)2
−
(

lim
x→0+

(lnx)xm+1

m + 1
− 0m+1

(m + 1)2

)

=
−1

(m + 1)2
− lim

x→0+

(lnx)
(m + 1)x−(m+1)

=
−1

(m + 1)2
− lim

x→0+

x−1

−(m + 1)2x−(m+2)

=
−1

(m + 1)2
+ lim

x→0+

xm+1

(m + 1)2

=
−1

(m + 1)2

With the partition
{

. . . , e−n, e−n+1, e−n+2, . . . , e−2, e−1, e0 = 1
}

of (0, 1], being

[lnx] = −n for e−n ≤ x < e−n+1, and
∣∣∣∣e−m−1

∣∣∣∣ < 1,

B =
∫ 1

0
[lnx]xmdx =

∞∑
n=1

∫ e−n+1

e−n
[lnx]xmdx

=
∞∑

n=1

∫ e−n+1

e−n
(−n)xmdx =

∞∑
n=1

−nxm+1

m + 1

∣∣∣∣e−n+1

e−n

=
∞∑

n=1

−n

(
e(−n+1)(m+1) − e−n(m+1)

)
m + 1

=
∞∑

n=1

−n

(
em+1e(−n)(m+1) − e−n(m+1)

)
m + 1

=
∞∑

n=1

−n

(
e(m+1) − 1

)
e−n(m+1)

m + 1

=
∞∑

n=1

(
1− e(m+1)

)
n

(
e−m−1

)n

m + 1
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=

(
1− em+1

)
e−m−1

m + 1

∞∑
n=1

(
e−m−1

)n−1

=
e−m−1 − 1

m + 1

∞∑
n=1

d

dx
xn

∣∣∣∣
x=e−m−1

=
e−m−1 − 1

m + 1
d

dx

∞∑
n=1

xn

∣∣∣∣
x=e−m−1

=
e−m−1 − 1

m + 1
d

dx

x

1− x

∣∣∣∣
x=e−m−1

=
e−m−1 − 1

(m + 1)(1− x)2

∣∣∣∣
x=e−m−1

=
e−m−1 − 1

(m + 1)(e−m−1 − 1)2
=

1
(m + 1)(e−m−1 − 1)

, so

Im = A−B = − 1
(m + 1)2

− 1
(m + 1)(e−m−1 − 1)

=
mem+1 + 1

(m + 1)2(em+1 − 1)
.

Solution 2 by the proposer

The integral equals
em+1

(m + 1)(em+1 − 1)
− 1

(1 + m)2
.

We have, by making the substitution lnx = y, that

1∫
0

{lnx}xmdx =
0∫

−∞

{y} e(m+1)ydy

=
∞∑

k=0

−k∫
−k−1

{y} e(m+1)ydy

=
∞∑

k=0

−k∫
−k−1

(y − (−k − 1)) e(m+1)ydy

=
∞∑

k=0

−k∫
−k−1

(y + k + 1)) e(m+1)ydy
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=
∞∑

k=0

(
y + k + 1

m + 1
e(m+1)y

∣∣∣∣−k

−k−1
− e(m+1)y

(m + 1)2

∣∣∣∣−k

−k−1

)

=
∞∑

k=0

e−(m+1)k

m + 1
− 1

(m + 1)2

∞∑
k=0

(
e−(m+1)k − e−(m+1)(k+1)

)

=
em+1

(m + 1)(em+1 − 1)
− 1

(1 + m)2
,

and the problem is solved.

Also solved by Valmir Bucaj (student, Texas Lutheran University), Seguin,
TX; Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong Kong, China;
Paolo Perfetti, Department of Mathematics, University Tor Vergata, Rome,
Italy; and David Stone and John Hawkins (jointly), Statesboro, GA.
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