Problems Ted Eisenberg, Section Editor
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This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

Solutions to the problems stated in this issue should be posted before
February 15, 2010

e 5086: Proposed by Kenneth Korbin, New York, NY

Find the value of the sum
2N?

©| oo

2 +
3
e 5087: Proposed by Kenneth Korbin, New York, NY

Given positive integers a, b, ¢, and d such that (a + b+ c+d)? = 2(a? + b% + ¢ + d?)
with a < b < ¢ < d. Rationalize and simplify

VITt+y—x £ {x:bc+bd+cd, and
VIty+VzT y =ab+ ac+ ad.

e 5088: Proposed by Isabel Iriberri Diaz and José Luis Diaz-Barrero, Barcelona, Spain

Let a, b be positive integers. Prove that

p(ab) V2
V(@) + 2% T 2

where ¢(n) is Euler’s totient function.

e 5089: Proposed by Panagiote Ligouras, Alberobello, Italy
In AABC let AB = ¢,BC = a,CA = b,r = the in-radius and r,, 1y, and r.= the
ex-radii, respectively.

Prove or disprove that

(Ta—r)(rb+rc)+(rc—r)(ra+7“b)+(rb—r)(rc+ra) 22< 2ab N be N 2ca )
Talc + 7T Ty + T7g TpTe + 7T b24+ca c2+ab a?+bc

e 5090: Proposed by Mohsen Soltanifar (student), University of Saskatchewan, Canada

Given a prime number p and a natural number n. Calculate the number of elementary
matrices E;,x, over the field Z,.

e 5091: Proposed by Owvidiu Furdui, Cluj, Romania



Let k,p > 0 be nonnegative integers. Evaluate the integral

/2 sin?P g
/ dx.
—r/2 1+ sin?H 2 + V1 4 sin** 2 ¢

Solutions

e 5068: Proposed by Kenneth Korbin, New York, NY.
Find the value of

\/1 + 2009\/1 + 2010\/1 +2011vV1 + - - -

Solution by Dmitri V. Skjorshammer (student, Harvey Mudd College),
Claremont, CA

To solve this, we apply Ramanujan’s nested radical. Consider the identity
(x +n)? = 22 + 2nz + n?, which can be rewritten as

x—l—n:\/n2—|—:c((;v—|—n)+n).

Now, the (x 4+ n) + n term has the same form as the left-hand side, so we can write it in
terms of a radical:

x+n:\/n2+x\/n2+(:c+n)((a:+2n)+n)

Repeating this process, ad infinitum, yields Ramanujan’s nested radical:

a:—l—n:\/n2+x\/n2+(x—|—n)\/n2—|—-~

With n =1 and = 2009, the right-hand side becomes the expression in the problem. It
follows that the value is 2010.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Pat Costello,
Richmond, KY; Michael N. Fried, Kibbutz Revivim, Israel; David E. Manes,
Oneonta, NY; Paolo Perfetti, Department of Mathematics, University Tor
Vergata, Rome, Italy; David Stone and John Hawkins (jointly), Statesboro,
GA; Nguyen Van Vinh (student, Belarusian State University), Minsk,
Belarus, and the proposer.

e 5069: Proposed by Kenneth Korbin, New York, NY.

1 1
4 2 and — respectively, are placed so that each of the
x
circles is tangent to the other three circles. Find positive integers x and y with
15 <z <y < 300.

Four circles having radii

Solution by Bruno Salgueiro Fanego, Viveiro, Spain



If all the circles are tangent in a point, the problem is not interesting because x and y
can take on any value for which 15 < z < y < 300. So we assume that the circles are not
mutually tangent at a point.

By Descarte’s circle theorem with €1, €2 and €3 being the curvature of the first three
circles, the curvature e4 of the fourth circle can be obtained with Soddy’s formula:

€4 = €1 +e+e3t 2\/6162 + €9€3 + €3€1, that is,

y = 14+15+2+2/14-15+15-0+x-14

y = 2942+ £2v210+ 292
Then, 210 + 292 must be a perfect square, say a?. Since, 15 < = < 300,
252 < 210 + 29z < 95%, so

26 <a <94

Thus,
29|(a? — 210).

The only integers a, 26 < a < 94, which satisfy this condition are 35,52, 64,81, and 93.
Taking into account that 15 < x < y < 300, we have:

Fora = 35, z=385andsoy=29+zx+ 2a= 13
Fora = 52, =86 and y = 219;
For a = 64, x =134 and y = 291;

and for a € {81,93}, none of the obtained values of y is valid.

Thus the only pairs of integers x and y with 15 < x < y < 300 are

(1) € {(35, 134), (86,219), (134, 291)}.

Also solved by Michael N. Fried, Kibbutz Revivim, Israel; Paul M. Harms,
North Newton, KS; John Hawkins and David Stone (jointly), Statesboro,
GA; Antonio Ledesma Vila, Requena-Valencia, Spain, and the proposer.

5070: Proposed by Isabel Iriberri Diaz and José Luis Diaz- Barrero, Barcelona, Spain.

Find all real solutions to the system
9(x% + 23 — 23) = 63 — 1,
9(z3 + 23 — 23) = 624 — 1,

Solution by Antonio Ledesma Vila, Requena -Valencia, Spain



Add all

9zt + a3 —23) = 6r3—1
95+ a3 —a3) = 6x4—1
9z 422 —23) = 6ay—1

i=1 i=1
n n
> (Bz)* —2> () +n=0
i=1 1=1

1
T = 3 for all ¢

Also solved by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie
(jointly), San Angelo, TX; Bruno Salgueiro Fanego, Viveiro, Spain; Kee-Wai
Lau, Hong Kong; China; David E. Manes, Oneonta, NY; John Nord,
Spokane, WA ; Paolo Perfetti, Department of Mathematics, University Tor
Vergata, Rome, Italy; Boris Rays, Brooklyn, NY; Dmitri V. Skjorshammer
(student, Harvey Mudd College), Claremont, CA, and the proposer.

e 5071: Proposed by José Luis Diaz-Barrero, Barcelona, Spain.

Let hg, hy, he be the altitudes of AABC with semi-perimeter s, in-radius r and
circum-radius R, respectively. Prove that

1/5(2s — 25 — b 25 — ?
(5( s —a) +5( s )_|_S( i C)> < R(Sin2A+sin23+sin20>.
4 ha hb hc r

Solution by Charles McCracken, Dayton, OH
Multiply both sides of the inequality by 4 to obtain

B B _ 2
5(2s — a) N 5(2s —b) n s(2s —¢) < (2R)7 {SmQ A + sin® B + sin® C}
he hy he "

! {(2}%)2 sin? A + (2R)?sin? B + (2R)? sin” C’} :
,



a b c
Now 2R = = = the i lity b
(0)%% SinA SinB sinC SO € Imequallty becomes

5(2s — a) N s(2s —b) N s(2s —c¢) < 1(@2 L2 —1—02).
ha hy he r

From Johnson (Roger A. Johnson, Advanced Euclidean Geometry, Dover, 2007, p. 11)
we have

2A
he=—, hy = -5 h. = —, where A represents the area of the triangle.
a c

The inequality now takes the form

as(2s —a)  bs(2s—b) cs(2s—c) 1[5 o o
< — .
oA + oA + oA < <a + b +c )

<

Since A = rs, we now have our inequality in the form
as(2s — a) n bs(2s — b) n cs(2s — ¢) < 1(a2 LR 02)
2rs 2rs 2rs r
2s — b(2s —b 2s —
af 32 a)+ ( 32 )+C( 32 ¢) < (a2+b2+cz>

Substituting a + b + ¢ for 2s we have

A

a(b+c)+blc+a)+cla+d) < 2a®+ 20 4 262
ab+ac+bct+ba+tca+ch < 2a®+ 26>+ 202

ab + be + ca a’ + b+ &2

IA

This last inequality, ab + bc + ca < a? + b% + ¢2, can be readily proved true for any triple
of positive numbers a, b, ¢ by letting b =a + d and ¢ = a + ¢ with 0 < § < €. Hence the
original inequality holds.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Paul M. Harms,
North Newton, KS; Kee-Wai Lau, Hong Kong, China; Boris Rays, Brooklyn,
NY; David Stone and John Hawkins (jointly), Statesboro, GA, and the
proposer.

5072: Proposed by Panagiote Ligouras, Alberobello, Italy.

Let a,b and c be the sides, I, I}, . the bisectors, m,, my, m. the medians, and hg, hp, he
the heights of AABC. Prove or disprove that
2) (—a+;+c)3 N (a—l;)+c)3 N (a+bc—c)3

4
zg(ma-zaﬂb-hwhc-mc)

b) 3y 2EotOr “+b+c) > 23 [ma(la + ha).

cyc cyc



Solution by proposer
We have

(—a+b+c) N (a—b+¢)® (a+b—rc)?

> a2 + b2+ 2.
a b c

In fact, the equality is homogeneous and putting a + b = c =1 gives

_ 3 _ 3 _ 3 _9.,\3
(—a+b+c) +(a b+ c) +(oH-b ¢) Za2+52+62©2(1 2a) ZZCLQ-
a b c e a e
Applying Chebyshev’s Inequality gives
1 —2a)3 1 1 1
Z(“):Zu—m)?’z<Z>.[Z(1—2a)3]. (3)
cyc a cyc a 3 cyc a cyc

Using the well known equalities

3
Yot = (Leo) -3+t ae+o. @)

(2)

1 1 1
(a+b+c)(a+b+0)232:9 (5)
and applying (4), (3), and (5) we have
(1—2a)3 1( 1)[ 3}
> (Y ) Y a2
Szl Xy) |20
1 1
= 3(2 -[(1—2a+1—2b+1—20)3—3(1—2a+1—2b)(1—2b+1—20)(1—20+1—2a)
a

1
cyc
(1—2a)?
> —
& —— >3-8 > ab (6)
cyc cyc
We have
3—8<Zab)22a2. (7)
cyc cyc
In fact,



& 3—6<Zab) > (Za)2:1<:>3—6(2ab> >1-3

cyc cyc cyc

2
& Zabﬁéz<za>

3

cyc

& Z(a —b)? >0, and this last statement is true.

cyc

Using (6) and (7) we have

§:“’§“V23_8(§;w)z§j&
&

cyc cyc

@Z 1—2a >Za and (1) is true.

cyc cyc
Is well known that
1
a> +bv* = 2m?+ 502 (A)
1
A+ = 2m?+ §a2 (B)
1
A 4a® = 2mi+ 5172 (C)
For (A),(B), and (C)
3
m2 4+ mi +m? = Z(a2 +b* 4+ ¢?) and
4
a?+ b+ = g(mz +mi +m2) (8)

It is also well known that
mazlazhaa melehIn chlczhc- (9)
Using (9) we have

mzzma'lazma'hm mgzmb'lbzmb'hbv ngmc'chmc'hc (D)

m2 >1,-hay mi>1ly-hy, m2>l.-he, (E)

Using (8) and (D) we have

a? + b2+ 2 > —(maly + mply + mele).  (10)

ol i
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4
a4+ b + ¢ g(maha + myphy + mehe).  (11)

And using (8), (D), and (E) we have

OOMP

a? + 0% 4+ 2 > —(malg + bhy + heme).  (12)
For part a of the problem, using (1) and (12) we have

Cat bt —bh4ce)3 b—c)® _ 4
( a+a+c) +(a b+c) +(a+c C) Zg(ma'la"i_lb'hb—*—hc'mC)

For part b of the problem, using (1), (10) and (11) we have

>

2[(—a+b+c)3+ (a—b+c)3+ (a+b—c)3}

a b c

4 4
3<ma-la+mb~lb+mc-lc> +3<ma-ha+mb-hb+mc-hc>

(—a+b+c)? N (a—b+c)3 N (a+b—c)?

=
a b c
2
Z 3<ma'la+mb'lb+mc'lc+ma'ha+mb'hb+mc'h0>
- (—a+b+c)3 N (a—b+c) N (a+b—c)?
a b c
2
>

3|:ma, . (la, + h(z) +mb . (lb"‘ hb) +mc . (lc+ hc):|

e 5073: Proposed by Ovidiu Furdui, Campia-Turzii, Cluj, Romania.

Let m > —1 be a real number. Evaluate

1
/ {Inz}zmdx,
0
where {a} = a — [a] denotes the fractional part of a.

Solution 1 by Bruno Salgueiro Fanego, Viveiro, Spain

1 1 1 1
I, = / {Inz}ax"dr = / (Inz — [Inz]))z"dr = / (Inz)z™dx — / Inz|a"de=A— B
0 0 0 0

1 1
where A = / (Inz)x"dz and B = / [Inz]z™dx. Integrating by parts
0 0

Judv =uv — [vdu with u = Inz and dv = xmdm>, and by using Barrow’s and

L’Hospital’s rule we obtain,

/(ln z)zdr =

(Inz)z™*! / (Inz)z™*! '
m + 1

Com+1l m+1  (m+1)2



1

= A = (Inz)z™* i
a m+1 (m+1)2%],
(In1)1m*t e ( . (Inz)zm*! om+1 )
- - — m _
m + 1 (m + 1)2 x—0t m + 1 (m + 1)2
—1 I (Inx)
= 75 — lm
(m+1)2  a—ot (m+ 1)z=(m+D)
-1 y 21
= 75 — lm
(m+1)2 v—0+ —(m + 1)22~(m+2)
_ —1 Lo Mt
T m+ 1?7 oot (m 1)2
_ -1
(m+1)?
With the partition { e e*nH’ e—n+2’ o 672’ e’l, 0 1} of (0, 1], being
nz] = —nfore™™ <z <e ™ and e <1,

—n+1

1 00 e
B = [Marar=Y [ i
0 n=17¢"

0 pem . _ppmtl el
= > [ =y T
n=1 e~ n=1 m + 1 e—n
) —n(@(n+1)(m+1) - en(m+1)>
- 712::1 m+1
0 —n(em+1e(n)(m+l) _ 6n(m+1))
N n=1 m + 1

) —n(e(erl) _ 1) e*ﬂ(m«}l)

n=1 m+1
- (e
- Z m+1

3
Il
_



z=e—m—1
eml 14 i n
= — x
m+1 dx — —e—m—1
B el -1d =
N m+1 drl—o|,—c-m-1

me™ 1 1
(m+1)2(emtl —1)°

Solution 2 by the proposer

The integral equals
em-l—l 1

(m+1)(emtt —1) (1+m)?
We have, by making the substitution Inz = y, that

1 0
/{ln x}pxdr = / {y} e+ Dy gy
0 —oo

o —k
= > [ {yyetmtuay
k=0 —k—1

—k

10



-k 6(m+1)y

_ i y+k+1e(m+l)y
k-1 (m+1)?

pr m—+1

—k
—k—1

(ef(mﬂ)k _ ef(m+1)(k+1))

©  o—(m+1)k

1 oo
m+1 (m+1)2k§::0

k=0

6m—i—l 1

(m+1)(emtt —1)  (1+m)?’

and the problem is solved.

Also solved by Valmir Bucaj (student, Texas Lutheran University), Seguin,
TX; Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong Kong, China;
Paolo Perfetti, Department of Mathematics, University Tor Vergata, Rome,
Italy; and David Stone and John Hawkins (jointly), Statesboro, GA.
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