
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
April 15, 2017

• 5433: Proposed by Kenneth Korbin, New York, NY

Solve the equation: 4
√
x+ x2 = 4

√
x+ 4
√
x− x2, with x > 0.

• 5434: Proposed by Titu Zvonaru, Comnesti, Romania and Neculai Stanciu, “George
Emil Palade” General School, Buzău, Romania

Calculate, without using a calculator or log tables, the number of digits in the base 10
expansion of 296.

• 5435: Proposed by Valcho Milchev, Petko Rachov Slaveikov Seconday School, Bulgaria

Find all positive integers a and b for which
a4 + 3a2 + 1

ab− 1
is a positive integer.

• 5436: Proposed by Arkady Alt, San Jose, CA

Find all values of the parameter t for which the system of inequalities

A =


4
√
x+ t ≥ 2y

4
√
y + t ≥ 2z

4
√
z + t ≥ 2x

a) has solutions;
b) has a unique solution.

• 5437: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let f : C − {2} → C be the function defined by f(z) =
2− 3z

z − 2
. If

fn(z) = (f ◦ f ◦ . . . ◦ f︸ ︷︷ ︸
n

)(z), then compute fn(z) and lim
n→+∞

fn(z).

• 5438: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania
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Let k ≥ 0 be an integer and let α > 0 be a real number. Prove that

x2k

(1− x2)α
+

y2k

(1− y2)α
+

z2k

(1− z2)α
≥ xkyk

(1− xy)α
+

ykzk

(1− yz)α
+

xkzk

(1− xz)α
,

for x, y, z ∈ (−1, 1).

Solutions

• 5415: Proposed by Kenneth Korbin, New York, NY

Given equilateral triangle ABC with inradius r and with cevian CD. Triangle ACD has
inradius x and triangle BCD has inradius y, where x, y and r are positive integers with
(x, y, r) = 1.
Part 1: Find x, y, and r if x+ y − r = 100

Part 2: Find x, y, and r if x+ y − r = 101.

Solution by Ed Gray, Highland Beach, FL

Editor’s comment: Ed’s solution to this problem was 18 pages in length. Listed below is
my greatly abbreviated outline of his solution method. All formulas listed below were
proved and/or referenced in Ed’s complete solution. He started his solution with the
second part of the problem and then applied the methods constructed there to the first
part of the problem. The reason for this will soon become apparent. Following is Ed’s
solution.

The following equations will be used in the solution.

x =
6r2 − 3rp

4r − p+
√

4r2 + p2 − 2rp
(1)

y =
3rp

p+ 2r +
√

4r2 + p2 − 2pr
(2)

k = p(2r − p) (3)

x+ y − r =
k

2r +
√

4r2 − k
(4)

Solution to Part 2. x+ y − r = 101.

Substituting the value x+ y − r = 101 into (4) and solving for k we see that

k

2r +
√

4r2 − k
= 101 =⇒ k = 404r − 10201,

and substituting this into (3) above we see that

404r − 10201 = 2pr − p2 =⇒ p = r −
√
r2 − 404r + 10201.
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Letting D equal the value under the square root we have

D2 = r2 − 404r + 10201 =⇒ r2 − 404r + 10201−D2 = 0.

Solving for r gives r = 202±
√

30603 +D2

Letting b2 = 30603 +D2 we have (b−D)(b+D) = 30603 = 31 · 1012.

This implies that there are three possible factorizations:

Case I : 1× 30603

Case II : 3× 10201

Case III : 101× 303

Case I:

{
b−D = 1
b+D = 30603

=⇒
{
b = 15302
D = 15301

.

So,
r1 = 202 + b = 202 + 15302 = 15504
r2 = 202− b = 202− 15302 < 0
p = r −D = 155404− 15301 = 203.

Therefore, r = 15504 and p = 203.

For these values of r and p, we evaluate x and y by using formulas (1) and (2) above.

x =
6r2 − 3rp

4r − p+
√

4r2 + p2 − 2rp

6(155040)2 − 3(15504)(203)

4(15504)− 203 +
√

4(15504)2 + (203)2 − 2(15504)(203)

= 15453.

y =
3pr

p+ 2r +
√

4r2 + p2 − 2pr

= 152.

So for Case I, r = 15504, x = 15453, y = 152, and x+ y − r = 101. Since x, y, r have no
common factor, they represent a solution.

Case II:

{
b−D = 3
b+D = 10201

=⇒
{
b = 5102
D = 5099

. So,


r1 = 202 + 5102 = 5304
r2 = 202− 5102 < 0
p = r −D = 205.

.

Following the path in Case I, we find that


r = 5304
x = 5252
y = 153, and

x+ y − r = 101.
These terms have no common factor and so represent a solution.
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Case III:

{
b−D = 101
b+D = 303

=⇒
{
b = 202
D = 101

. So,


r1 = 202 + 202 = 4043
r2 = 202− 202 = 0, not viable
p = r −D = 4043− 101 = 303.

.

Given r = 404, p = 303, and calculating as before, we have for Case III,
r = 404, x = 303, y = 202, x+ y − r = 101. However 101 divides all three terms,
violating (x, y, r) = 1, so we do not have a solution.

In summary, and taking into account the interchangeability of x and y, there are four
solutions for Part 2 of the problem:xy
r

 =

15453
152

15504

 ,

5252
153
5304

 ,

 152
15453
15504

 ,

 153
5252
5304

 .

Solution to Part 1. x+ y − r = 100. In solving Part 1 of the problem we employ the
same techniques that were used in Part 2. We start off by finding that if

k

2r +
√

4r2 − k
= 100 then k = 400r − 10, 000. Substituting this into Equation (3), gives

us 400r − 10, 000 = 2pr − p2 and solving for p gives us p = r −
√
r2 − 4004r + 10, 000.

The discriminant, D is given by D2 = r2 − 400r + 10000. Writing this as a quadratic in
r and solving for r gives us

r2 − 400r + 10, 000−D2 = 0

r = 200±
√

30, 000 +D2.

And as before, letting b2 = 30, 000 +D2 we obtain

(b−D+)(b+D) = 30, 000 = 24 · 31 · 54.

Hence there are 5× 2× 5 = 50 factors which need to be written as the product of two
factors. Since 2b must equal the sum of the two factors, they cannot be of opposite
parity. Following is a table listing all factorizations. We eliminate those factorizations
that have an odd factor by placing an asterisk in front of them.

∗1× 30, 000 2× 15, 000 ∗3× 10, 000
4× 7500 ∗5× 6, 000 8× 3750
10× 3000 12× 2500 ∗15× 2000
∗16× 1875 20× 1500 24× 1250
∗25× 1200 30× 1000 40× 750
∗48× 625 50× 600 60× 500
∗75× 400 ∗80× 375 100× 300
120× 250 ∗125× 240 150× 200

The remaining factorizations represent potential solutions. We will do the first one in
detail but the others we will only check to see if (x, y, r) = 1.{
b−D = 2
b+D = 15000

=⇒
{
b = 7501
D = 7499.

. So,


r1 = 200 = 7501 = 7701
r2 = 200− 7501 < 0
p = r −D = 7701− 7499 = 202.

Given p = r −D = 7701− 7499 = 202. For r = 7701, p = 202 we calculate x and y using
the standard formulas.

x =
6r2 − 3rp

4r − p+
√

4r2 + p2 − 2rp
=⇒ x = 7650
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y =
3rp

p+ 2r +
√

4r2 + p2 − 2pr
=⇒ y = 151.

So x = 7650, y = 152, r = 7701. These have no common factor and so represent a
solution.

We now move to the next case.

{
b−D = 4
b+D = 7500

=⇒ x = 3900, y = 152, r = 3952. Since

(x, y, z) 6= 1, this is not a solution.

And the next case.

{
b−D = 6
b+D = 5000

=⇒ x = 2650, y = 153, r = 2703. Since

x+ y − r = 100 and (x, y, r) = 1 this is a solution.

And the next.

{
b−D = 8
b+D = 3750

=⇒ x = 2025, y = 154, r = 2079. Since x+ y − r = 100

and (x, y, r) = 1 this is a solution 10pt Working our way through the table of potential

solutions we find that

{
b−D = 24
b+D = 1250

=⇒ x = 775, y = 162, r = 837 and since

x+ y − r = 100 and (x, y, r) = 1 this is a solution

Systemically working our way the table we see that many values did not result in an
answer to the problem. Summarizing Part 1 of the problem, and taking into account the
interchangeability of x and y, we see that there are exactly eight solutions.

1) x = 7650, y = 151, r = 7701
2) x = 2650, y = 153, r = 2703
3) x = 2025, y = 154, r = 2079
4) x = 775, y = 162, r = 837
5) x = 151, y = 7650, r = 7701
6) x = 153, y = 2650, r = 2703
7) x = 154, y = 2025, r = 2079
8) x = 162, y = 775, r = 837.

Also solved by Kee-Wai Lau, Hong Kong, China; David Stone and John
Hawkins, Georgia Southern University, Statesboro, GA, and the proposer.

• 5416: Proposed by Arsalan Wares, Valdosta State University, Valdosta, GA

Two congruent intersecting holes, each with a square cross-section were drilled through
a cube. Each of the holes goes through the opposite faces of the cube. Moreover, the
edges of each hole are parallel to the appropriate edges of the original cube, and the
center of each hole is at the center of the original cube. Letting the length of the original
cube be a, find the length of the square cross-section of each hole that will yield the
largest surface area of the solid with two intersecting holes. What is the largest surface
area of the solid with two intersecting holes?
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Solution by Paul M. Harms, North Newton, KS

Let the side lengths of the drilled squares be x at the surface of the original cube. The
surface area of the one side of the original cube, with a square hole cut out of it, is
a2 − x2. There are four of these sides on the original cube.

On a side of the original cube the shortest distance between an edge of the original cube
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and a parallel side of the drilled square hole is
a− x

2
.

Now consider the surface area “inside” the cube made by the part of the drilled square
that starts at a side of the original cube and ends when the drilled square meets the
other drilled square originating from an adjacent side of the cube. This surface area
looking at one side of the cube includes four rectangles with one side length of x and

“depth” length of
a− x

2
, so this surface area is

4x(a− x)

2
= 2(a− x). There are four of

these around the original cube. The surface area of each of the two sides of the original
cube which have no holes is a.

In the middle of the original cube at the intersection of the two drilled square holes,
there are two squares of side length x with are parallel to the sides of the original cube
with no holes . The area of each square is x2.

The total surface area of the problem is

4(a2 − x2) + 4 (2x(a− x)) + 2a2 + 2x2 = 6a2 + 8ax− 10x2.

The maximum surface area occurs when 8a− 20x = 0 or x =
2a

5
. The maximum surface

area is
38a2

5
when a side of the drilled square holes as a length of

2a

5
.

Editor′s comment: David Stone and John Hawkins, both from Georgia
Southern University, Statesboro, GA accompanied their solution by placing the
statement of the problem into a story setting. They wrote:

“An interpretation: in the ancient Martian civilization, the rulers favorite meditational
spot was a levitating cube having a cubical inner sanctum formed by two horizontal
square tunnels, meeting at the center of the cube, from which he could see out in all four
directions. The designers were charged to construct the ship with a maximum amount
of wall space for inscriptions and carved likenesses of His Highness. There are four short
hallways leading from the inner room to the outside walls.” They let x be the side
length of the square tunnels that are drilled through the original cube and noted that
each tunnel has an x× x cross section and has length a. The inner most cubical room is
x× x× x. They then mentioned that “by drilling the tunnels and opening up an interior

chamber, the surface area has increased from 6a2 to
38

5
a2, an increase of

8

5
a2 or 27%.

So the King has his private getaway and more space for pictures and wall hangings.”

Also solved by Jeremiah Bartz, University of North Dakota, Grand Forks,
ND and Nicholas Newman, Francis Marion University, Florence SC; Michael
N. Fried, Ben-Gurion University, Beer-Sheva, Israel; David A. Huckaby,
Angelo State University, San Angelo, TX; David Stone and John Hawkins,
Georgia Southern University, Statesboro, GA, and the proposer.

• 5417: Proposed by Arkady Alt, San Jose, CA

Prove that for any positive real number x, and for any natural number n ≥ 2,

n

√
1 + x+ · · ·+ xn

n+ 1
≥ n−1

√
1 + x+ · · ·+ xn−1

n
.

Solution 1 by Henry Ricardo, New York Math Circle, NY
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Let αn = (1 + x+ · · ·+ xn)/(n+ 1) and define

F (x) =
(1 + x+ x2 + · · ·+ xn−1)n

(1 + x+ x2 + · · ·+ xn)n−1
.

Then, for x > 0 and n ≥ 2, we see that

n−1
√
αn−1 ≤ n

√
αn ⇔ αnn−1 ≤ αn−1n ⇔ F (x) ≤ nn

(n+ 1)n−1
= F (1).

Now we show that F (x) attains its absolute maximum value at x = 1.

For x 6= 1, we have

F ′(x) =
(xn − 1)n−1(xn+1 − 1)−n

(
−x2n+1 + n2xn+2 + 2(1− n2)xn+1 + n2xn − x

)
x(x− 1)2

=

G(x)︷ ︸︸ ︷
(xn − 1)n−1

(xn+1 − 1)n(x− 1)2
·

H(x)︷ ︸︸ ︷(
−x2n + n2xn+1 + 2(1− n2)xn + n2xn−1 − 1

)
.

Noting that G(x) is negative for 0 < x < 1 and positive for x > 1, we examine the factor
H(x) to see that

H(x) = −(xn − 1)2 + n2xn−1(x− 1)2

= −n2(x− 1)2
[

(xn−1 + xn−2 + · · ·+ x+ 1)2

n2
− xn−1

]
= −n2(x− 1)2

[(
xn−1 + xn−2 + · · ·+ x+ 1

n

)2

−
(

n
√
xn−1 · xn−2 · · ·x · 1

)2]

is negative for all x > 0 by the AM-GM inequality.

Thus F ′(x) > 0 for 0 < x < 1 and F ′(x) < 0 for x > 1, implying that F (x) has an
absolute maximum value at x = 1—that is, F (x) ≤ F (1) on (0,∞), which proves the
proposed inequality.

COMMENT: This was proposed by Walther Janous as problem 1763 (1992, p. 206) in
Crux Mathematicorum. My solution is based on the published solution of Chris
Wildhagen.

Solution 2: by Moti Levy, Rehovot, Israel

If x = 1 then the inequality holds, since

n

√
1 + x+ · · ·+ xn

n+ 1
=

n−1

√
1 + x+ · · ·+ xn−1

n
= 1.

We assume that x > 1.
Let us define the continuous functions g (t) , and f (t) , t ∈ R, t > 1, as follows,

g (t) :=
xt+1 − 1

x− 1

1

t+ 1
, f (t) := (g (t))

1
t .
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Clearly, n

√
1+x+···+xn

n+1 = n

√
1

n+1
xn+1−1
x−1 = f (n) . The original inequality (in terms of the

function f) is
f (n) ≥ f (n− 1) , for n ≥ 2.

For n = 2,
√

1+x+x2

3 ≥ 1+x
2 follows from1+x+x2

3 −
(
1+x
2

)2
= 1

12 (x− 1)2 ≥ 0.

Therefore, it suffices to prove that f (t) is monotone increasing function for t ≥ 1.
We will show this by proving that the derivative of ln f (t) is postive for t ≥ 1.
The derivative is given by

t2
d

dt
(ln f) = − ln g + t

dg
dt

g
.

The first step is showing − ln g + t
dg
dt
g > 0 for t = 1.

− ln g + t
dg
dt

g

∣∣∣∣∣
t=1

= − ln

(
1 + x

4

)
+

2x2 lnx

2 (x2 − 1)
.

To show that − ln
(
1+x
4

)
+ 2x2 lnx

2(x2−1) > 0 for x > 0, we see that

limx→0

(
− ln

(
1+x
4

)
+ 2x2 lnx

2(x2−1)

)
= ln 4 > 0.

Now we show that the derivative of − ln
(
1+x
4

)
+ 2x2 lnx

2(x2−1) is positive:

d
(
− ln

(
1+x
4

)
+ 2x2 lnx

2(x2−1)

)
dx

=
1

x2 − 1
− 2x lnx

(x2 − 1)2
.

We use the well known inequality: lnx ≤ x2−1
2x for x > 0 to show that

1

x2 − 1
− 2x lnx

(x2 − 1)2
≥ 0.

The second step is showing that the derivative of − ln g + t
dg
dt
g is positive for t > 0,

d

(
− ln g + t

dg
dt
g

)
dt

= −
dg
dt

g
+

dg
dt

g
+
d

dt

(
dg
dt

g

)
=

d

dt

(
dg
dt

g

)
.

After some tedious calculation we arrive at,

d

dt

(
dg
dt

g

)
=

(
xt+1 − 1

)2 − xt+1 ln2 xt+1

(xt+1 − 1)2 (t+ 1)2
.

To show that
(
xt+1 − 1

)2 ≥ xt+1 ln2 xt+1, or that lnxt+1 ≤ 1√
xt+1

(
xt+1 − 1

)
, we use

again the inequality ln y ≤ y2−1
2y for y > 0,

ln y ≤ y − 1
√
y

y + 1

2
√
y
.

But y+1
2
√
y ≥ 1; hence,

ln y ≤ y − 1
√
y
, y > 0.
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Now set y = xt+1 to finish the proof.

Solution 3 by Kee-Wai Lau, Hong Kong, China

Denote the inequality of the problem by (∗). It is easy to see that if (∗) holds for x = t

then it also holds for x =
1

t
. Hence it suffices to prove (∗) for 0 < x ≤ 1.

Let f(x) = (n− 1) ln

(
n∑
k=0

xk

)
− n ln

(
n−1∑
k=0

xk

)
+ ln

(
nn

(n+ 1)n−1

)
, where 0 < x ≤ 1.

By taking logarithms, we see that (∗) is equivalent to f(x) ≥ 0.

We have f(1) = 0 and for 0 < x < 1,

f(x) = (n− 1) ln(1− xn+1)− n ln(1− xn) + ln(1− x) + ln

(
nn

(n+ 1)n−1

)
.

Hence to prove (∗), we need only prove that f ′(x) < 0 for 0 < x < 1.

Since f ′(x) =
g(x)

(x− 1)(xn − 1)(xn+1 − 1)
, where

g(x) = x2n − n2xn+1 + 2(n− 1)(n+ 1)xn − n2xn−1 + 1, it suffices to show

g(x) > 0, for 0 < x < 1. Now

g′(x) = 2nx2n−1 − (n+ 1)n2xn + 2n(n− 1)(n+ 1)xn−1 − (n− 1)n2xn−2,

g′′(x) = 2n(2n− 1)x2n−2 − (n+ 1)n3xn−1 + 2n(n+ 1)(n− 1)2xn−2 − (n− 1)(n− 2)n2xn−3, and

g′′′(x) = 4n(n− 1)(2n− 1)x2n−3 − (n− 1)(∗n+ 1)n3xn− 2+

2n(n− 2)(n+ 1)(n− 1)2xn−3 − (n− 1)(n− 2)(n− 3)n2xn−4.

Thus g(1) = g′(1) = g′′(1) = g′′′(x) = 0 so that 1 is a root of multiplicity 4 of the
equation g(x) = 0. By Descartes’ rule of signs, the equation g(x) = 0 has no other
positive roots. Since g(0) = 1 > 0, so g(x) > 0 for 0 < x < 1.

This completes the proof.

Solution 4 by Paolo Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy

Let f(t) = 1/x. The inequality goes unchanged because

n

√
1 + 1

t + . . .+ 1
tn

tn(n+ 1)
≥

n−1

√
1 + 1

t + . . .+ 1
tn−1

tn−1n

⇐⇒ n

√
1 + t+ . . .+ tn

n+ 1
≥ n−1

√
1 + t+ . . .+ tn−1

n
.
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This means that we may assume x ≥ 1.

Let x = 1. The inequality becomes

1 = n

√√√√ 1

n+ 1
(1 + 1 + . . .+ 1︸ ︷︷ ︸

n+1 times

) ≥ n

√√√√ 1

n
(1 + 1 + . . .+ 1︸ ︷︷ ︸

n times

) = 1.

Let x > 1. The inequality is also

n

√
1

n+ 1

1− xn+1

1− x
≥ n−1

√
1

n

1− xn
1− x

,

that is

n

√
1

x− 1

∫ x

1
tn ≥ n−1

√
1

x− 1

∫ x

1
tn−1.

This is the Power–Means inequality for integrals.

Also solved by Ed Gray, Highland Beach, FL; Albert Stadler, Herrliberg,
Switzerland, and the proposer.

• 5418: Proposed by D.M. Bătinetu-Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “George Emil Palade” General School,
Buzaău, Romania

Let ABC be an acute triangle with circumradius R and inradius r. If m ≥ 0, then prove
that ∑

cyclic

cosA cosm+1B

cosm+1C
≥ 3m+1Rm

2m+1(R+ r)m
.

Solution 1 by Nikos Kalapodis, Patras, Greece

Applying Radon’s Inequality and taking into account that

cosA+ cosB + cosC = 1 +
r

R
and

∑
cyclic

cosA cosB

cosC
≥ 3

2
(see Solution 1 of Problem

5381, SSMA, April 2016) we have

∑
cyclic

cosA cosm+1B

cosm+1C
=
∑
cyclic

(
cosA cosB

cosC

)m+1

cosmA
≥

∑
cyclic

cosA cosB

cosC

m+1

∑
cyclic

cosA

m ≥

3m+1Rm

2m+1(R+ r)m
.

Solution 2 by Arkady Alt, San Jose, CA

Firstly, we will prove that in any acute triangle the inequality

(1)
∑
cyc

cosA cosB

cosC
≥ 3

2
, holds.

11



Let α := π − 2A, β := π − 2B, γ := π − 2C. Then α, β, γ > 0 (since

A,B,C < π/2 ), α+ β + γ = π and (1)⇐⇒
∑
cyc

sin
α

2
sin

β

2

sin
γ

2

≥ 3

2
.

Let a, b, c be sidelenghts of a triangle with angles α, β, γ, respectively, and s be
semiperimeter of this triangle.

Then sin
α

2
=

√
1− cosα

2
=

√
1

2

(
1− b2 + c2 − a2

2bc

)
=

√
(s− b) (s− c)

bc
and,

similarly, sin
β

2
=

√
(s− c) (s− a)

ca
, sin

γ

2
=

√
(s− a) (s− b)

ab
. Hence,

∑
cyc

sin
α

2
sin

β

2

sin
γ

2

=
∑
cyc

√
(s− b) (s− c)

bc
·
√

(s− c) (s− a)

ca√
(s− a) (s− b)

ab

=
∑
cyc

s− c
c

=
∑
cyc

s

c
− 3 =

1

2
(a+ b+ c) ·

(
1

a
+

1

b
+

1

c

)
− 3 ≥ 1

2
· 9− 3 =

3

2
.

Noting that cosA+ cosB + cosC = 1 +
r

R
and using a combination of the Weighted

Power Mean-Arithmetic Inequality with weights cosA, cosB, cosC > 0 and inequality
(1) we obtain:

∑
cyc

cosA cosm+1B

cosm+1C
=

∑
cyc

cosA

(
cosB

cosC

)m+1

=
∑
cyc

cosA ·


∑
cyc

cosA

(
cosB

cosC

)m+1

∑
cyc

cosA

 ≥

∑
cyc

cosA ·


∑
cyc

cosA

(
cosB

cosC

)
∑
cyc

cosA


m+1

=
∑
cyc

cosA ·

(∑
cyc

cosA cosB

cosC

)m+1

(∑
cyc

cosA

)m+1 =

(∑
cyc

cosA cosB

cosC

)m+1

(∑
cyc

cosA

)m ≥

(
3

2

)m+1

(
1 +

r

R

)m =
3m+1Rm

2m+1 (R+ r)m
.

Solution 3 by Nicusor Zlota, “Traian Vuia” Technical College, Focsani,
Romania

The inequality is equivalent to and Radon’s inequality, and applying it we obtain

∑ cosA cosm+1B

cosm+1C
=
∑(

cosA cosB

cosC

)m+1

cosmA

≥
Radon

(∑ cosA cosB

cosC

)m+1

∑
cosA)m

≥ 3m+1Rm

2m+1(R+ r)m
,

where
∑

cosA = 1 +
r

R
and

∑ cosA cosB

cosC
=
∑ tanC

tanA+ tanB
.

Denote tanA = x, tanB = y, tanC = z. Using Nesbitt’s inequality, we have

12



∑ tanC

tanA+ tanB
=
∑ z

x+ y
≥

Nesbitt

3

2
.

Solution 4 by Henry Ricardo, New York Math Circle, NY.

We will use the following known results: (1) Radon’s inequality: If xk, ak > 0 ∀k, p > 0,

then
∑n

k=1
xp+1
k

apk
≥ (
∑n

k=1 xk)
p+1 / (

∑n
k=1 ak)

p; (2)
∑
cyclic

cosA cosB

cosC
≥ 3/2 ; (3)∑

cyclic cosA = (R+ r)/R .

Now we have

∑
cyclic

cosA cosm+1B

cosm+1C
=

∑
cyclic

(
cosA cosB

cosC

)m+1

cosmA

(1)

≥

(∑
cyclic

cosA cosB
cosC

)m+1(∑
cyclic cosA

)m
(2), (3)

≥ (3/2)m+1

((R+ r)/R)m
=

3m+1Rm

2m+1(R+ r)m
.

Comments: (a) Inequality (2) appeared as problem 4053, proposed by Šefket
Arslanagić, in Crux Mathematicorum and reappeared in several solutions to problem
5381 in this Journal; (b) Inequality (3) appeared in Solution 1 to problem 5381 in this
Journal. It is also Lemma 2.5.1 in Inequalities: A Mathematical Olympiad Approach by

R. Manfrino et. al.; (c) The related inequality
∑

cyclic

(
cosA cosB

cosC

)m+1 ≥ 3/2m+1

appeared as problem 5381 by the current proposers.

Editor’s comment: Moti Levy of Rehovot Israel stated in his solution that: “A nice
article on Radon’s inequality is A generalization of Radon’s Inequality by D. M.
Bătineţu-Giurgiu and Ovidiu T. Pop, in CREATIVE MATH. & INF. 19 (2010), No. 2,
116 - 121.”

Also solved by Ed Gray, Highland Beach, FL; Moti Levy, Rehovot, Israel;
Albert Stadler, Herrliberg, Switzerland, and the proposer.

5419: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let a1, a2, · · · , an be positive real numbers. Prove that

n∏
k=1

(
n∑
k=1

atkk

)
≥

(
n∑
k=1

a
tn+1

4
k

)n

where for all k ≥ 1, tk is the kth tetrahedral number defined by tk =
k(k + 1)(k + 2)

6
.

Counter example by Moti Levy, Rehovot, Israel
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The index k appears twice in the left hand side. This seems odd. The proposer has
been asked and here is his response:
“Here, index k is used in both sum and product.
But indices in sums and product are dummy variables and they do not need to be distinct.
Surely, it is convenient but not necessary.”

Following the proposer’s argument that the index k is a dummy variable, we change the
first index designation from the letter k to the letter j.

Now the proposed inequality becomes:

n∏
j=1

(
n∑
k=1

atkk

)
≥

(
n∑
k=1

a
tn+1

4
k

)n
.

But
n∏
j=1

(
n∑
k=1

atkk

)
=

(
n∑
k=1

atkk

)n
,

hence the proposed inequality implies

n∑
k=1

atkk ≥
n∑
k=1

a
tn+1

4
k .

Let us check this inequality for the special case n = 2, for example:

2∑
k=1

atkk = at11 + at22 = a1 + a42

2∑
k=1

a
t3
4
k = a

5
2
1 + a

5
2
2

Now take a1 = 4 and a2 = 1. Since

4 + 1 ≤ 4
5
2 + 1,

the inequality is not true.

Editor′s note : The impossibility of this problem as it originally appeared was also
noted by Albert Stadler of Herrliberg, Switzerland. I, as editor, should have
noticed this mistake, but didn’t; mea culpa.

In correspondence with the proposer of the problem, José Luis Dı́az-Barrero, it was
acknowledged that the problem should have read as follows:

Let a1, a2, · · · , an be positive real numbers. Prove that

n∏
k=1

 n∑
j=1

atkj

 ≥ ( n∑
k=1

a
tn+1

4
k

)n

where for all k ≥ 1, tk is the kth tetrahedral number defined by

tk =
k(k + 1)(k + 2)

6
.
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However, by changing the index in this manner, as Moti Levy mentioned, “changes the
meaning of the problem.” Below is a proof of the problem as it was intended to be in the
first place.

Solution by the proposer. We consider the function f(x) = ln(ax1 + ax2 + · · ·+ axn) that is
convex in R, as can be easily proven. Applying Jensen’s inequality to f(x), we obtain

n∑
k=1

pk ln
(
axk1 + · · ·+ axkn

)
≥ ln

(
a
∑n

k=1 pkxk
1 + · · ·+ a

∑n
k=1 pkxk

n

)
where pk are positive numbers of sum one and x1, x2, · · · , xn ∈ R. Taking into account
that f(x) = ln(x) is injective, then the preceding expression becomes

ln

 n∏
k=1

 n∑
j=1

axkj

pk
 ≥ ln

(
a
∑n

k=1 pkxk
1 + · · ·+ a

∑n
k=1 pkxk

n

)
or equivalently,

n∏
k=1

 n∑
j=1

axkj

pk

≥
(
a
∑n

k=1 pkxk
1 + · · ·+ a

∑n
k=1 pkxk

n

)

Setting pk =
1

n
, 1 ≤ k ≤ n and xk = tk, 1 ≤ k ≤ n, and taking into account that

n∑
k=1

tk =
n

4
tn+1, as can be easily proven for instance by induction, then we have

n∏
k=1

 n∑
j=1

atkj

1/n

≥
n∑
k=1

a
tn+1

4
k

from which the statement follows. Equality holds when n = 1, and we are done.

Comment: On account of the preceding for the particular case n = 2, we have

2∏
k=1

 2∑
j=1

atkj

 ≥ ( 2∑
k=1

a
tn+1

4
k

)2

or
(at11 + at12 )(at21 + at22 ) ≥ (a

t3/4
1 + a

t3/4
2 )2

Letting a1 = 4, a2 = 1, t1 = 1, t2 = 4, t3 = 10 in the last expression, we obtain

(41 + 1)(44 + 1) ≥ (45/2 + 1)2 ⇐⇒ 1285 ≥ 1089

5420: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let A =

(
3 1
−4 −1

)
. Calculate

lim
n→∞

1

n

(
I2 +

An

n

)n
.
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Solution 1 by Brian Bradie, Christopher Newport University, Newport
News, VA

Let

A =

[
3 1
−4 −1

]
.

The characteristic polynomial of A is λ2 − 2λ+ 1, so λ = 1 is an eigenvalue of A with
algebraic multiplicity 2. The vector

v =

[
1
−2

]
forms a basis for the eigenspace of A corresponding to λ = 1. One solution of the
equation A− I = v is the vector [

1
−1

]
.

The matrix A can therefore be written in the form

A = T

[
1 1
0 1

]
T−1,

where

T =

[
1 1
−2 −1

]
.

A straightforward induction argument establishes that[
1 1
0 1

]n
=

[
1 n
0 1

]
,

so that

An = T

[
1 n
0 1

]
T−1 =

[
2n+ 1 n
−4n −2n+ 1

]
.

Thus,

An

n
=

 2 +
1

n
1

−4 −2 +
1

n

 ,
and

I2 +
An

n
=

 3 +
1

n
1

−4 −1 +
1

n

 = T

 1 +
1

n
1

0 1 +
1

n

T−1.
Another straightforward induction argument establishes that 1 +

1

n
1

0 1 +
1

n


n

=


(

1 +
1

n

)n
n

(
1 +

1

n

)n−1
0

(
1 +

1

n

)n
 ,
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so that

(
I2 +

An

n

)n
= T


(

1 +
1

n

)n
n

(
1 +

1

n

)n−1
0

(
1 +

1

n

)n
T−1

=

 2n

(
1 +

1

n

)n−1
+

(
1 +

1

n

)n
n

(
1 +

1

n

)n−1
−4n

(
1 +

1

n

)n−1
−2n

(
1 +

1

n

)n−1
+

(
1 +

1

n

)n
 .

Finally,

lim
n→∞

1

n

(
I2 +

An

n

)n
=

[
2e e
−4e −2e

]
.

Solution 2 by Henry Ricardo, New York Math Circle, NY.

To simplify the solution, we invoke a known result (∗) that is a consequence of the
Cayley-Hamilton theorem: If A ∈M2(C) and the eigenvalues λ1, λ2 of A are equal, then
for all n ≥ 1 we have An = λn1B + nλn−11 C, where B = I2 and C = A− λ1I2. (See, for
example, Theorem 2.25(b) in Essential Linear Algebra with Applications by T.
Andreescu, Birkhäuser, 2014.)

The eigenvalues of the given matrix A are both equal to 1, so we apply (∗) to get
An = nA− (n− 1)I2. Now we use the last expression to see that
M = I2 +An/n = A+ I2/n ; and, since M ’s eigenvalues are both equal to 1 + 1/n, we
apply (∗) again to determine that

1

n

(
I2 +

An

n

)n
=

1

n
Mn

=
1

n

[(
1 +

1

n

)n
I2 + n

(
1 +

1

n

)n−1(
M −

(
1 +

1

n

)
I2

)]

=
1

n

[
n

(
1 +

1

n

)n−1
M +

(
1 +

1

n

)n
(1− n)I2

]

=
1

n

[
n

(
1 +

1

n

)n−1(
A+

I2
n

)
+

(
1 +

1

n

)n
(1− n)I2

]

=

(
1 +

1

n

)n
· n

2A− (n2 − n− 1)I2
n(n+ 1)

→ e(A− I2) =

(
2e e
−4e −2e

)
.

Solution 3 by Albert Stadler, Herrliberg, Switzerland

Put I =

(
1 0
0 1

)
, J =

(
1 1
0 1

)
, S =

(
3 −2
−6 7

)
.

Then

AS = SJ, S−1 =
1

9

(
7 2
6 3

)
, A = SJS−1, An =

(
SJS−1

)n
= SJnS−1, Jn =

(
1 n
0 1

)
,
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1

n

(
I +

An

n

)n
=

1

n

(
I +

(SJS−1)n

n

)n
=

1

n

(
I + S

Jn

n
S−1

)n

=
1

n

(
S

(
I +

Jn

n

)
S−1

)n

=
1

n
S

(
I +

Jn

n

)n
S−1

=
1

n
S

1 + 1
n 1

0 1 + 1
n

n

S−1

=

(
1 + 1

n

)n
n

S

1 1
1+ 1

n

0 1


n

S−1

=

(
1 + 1

n

)n
n

S

1 n
1+ 1

n

0 1


n

S−1 −→

= eS

0 1

0 0

S−1

=
e

9
S

(
6 3
0 0

)

= e

 2 1

−4 −2

 , as n −→∞.

Solution 4 by Brian D. Beasley, Presbyterian College, Clinton, SC

Solution. Let Bn = I2 + (1/n)An. It is straightforward to show by induction that
Bn = A+ (1/n)I2. Using the characteristic polynomial of Bn, we have
B2
n = 2(1 + 1/n)Bn − (1 + 1/n)2I2. It then follows by induction on k that for each

positive integer k,

Bk
n = k

(
1 + 1

n

)k−1
Bn − (k − 1)

(
1 + 1

n

)k
I2.
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Thus

lim
n→∞

1

n
Bn
n = lim

n→∞

[(
1 +

1

n

)n−1
Bn −

(
n− 1

n

)(
1 +

1

n

)n
I2

]
= eA− eI2
= e(A− I2)

= e

(
2 1
−4 −2

)
.

Also solved by Arkady Alt, San Jose, CA; Hatef I. Arshagi, Guilford
Technical Community College, Jamestown, NC; Anthony J. Bevelacqua,
University of North Dakota, Grand Forks, ND; Bruno Salgueiro Fanego,
Viveiro, Spain; Kee-Wai Lau, Hong Kong, China; Moti Levy, Rehovot,
Israel; David R. Stone and John Hawkins, Georgia Southern University,
Statesboro, GA, and the proposer.
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