
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
April 15, 2011

• 5146: Proposed by Kenneth Korbin, New York, NY

Find the maximum possible value of the perimeter of an integer sided triangle with
in-radius r =

√
13.

• 5147: Proposed by Kenneth Korbin, New York, NY

Let {
x = 5N2 + 14N + 23 and
y = 5(N + 1)2 + 14(N + 1) + 23

where N is a positive integer. Find integers ai such that

a1x
2 + a2y

2 + a3xy + a4x + a5y + a6 = 0.

• 5148: Proposed by Pedro Pantoja (student, UFRN), Natal, Brazil

Let a, b, c be positive real numbers such that ab + bc + ac = 1. Prove that

a2

3
√

b(b + 2c)
+

b2

3
√

c(c + 2a)
+

c2

3
√

a(a + 2b)
≥ 1.

• 5149: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

A regular n-gon A1, A2 · · · , An (n ≥ 3) has center F , the focus of the parabola y2 = 2px,
and no one of its vertices lies on the x axis. The rays FA1, FA2, · · · , FAn cut the
parabola at points B1, B2, · · · , Bn.

Prove that
1
n

n∑
k=1

FB2
k > p2.

• 5150: Proposed by Mohsen Soltanifar(student, University of Saskatchewan), Saskatoon,
Canada

Let {An}∞n=1, (An ∈ Mn×n(C)) be a sequence of matrices such that det(An) 6= 0, 1 for all
n ∈ N . Calculate:

lim
n→∞

nn ln(|det(An)|)
ln (|det (adj◦n (An)) |)

,

where adj◦n refers to adj ◦ adj ◦ · · · ◦ adj, n times, the nth iterate of the classical adjoint.
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• 5151: Proposed by Ovidiu Furdui, Cluj, Romania

Find the value of
∞∏

n=1

(√
π

2
· (2n− 1)!!

√
2n + 1

2nn!

)(−1)n

.

More generally, if x 6= nπ is a real number, find the value of

∞∏
n=1

(
x

sinx

(
1− x2

π2

)
· · ·
(

1− x2

(nπ)2

))(−1)n

.

Solutions

• 5128: Proposed by Kenneth Korbin, New York, NY

Find all positive integers less than 1000 such that the sum of the divisors of each integer
is a power of two.

For example, the sum of the divisors of 3 is 22, and the sum of the divisors of 7 is 23.

Solution by Dionne Bailey, Elsie Campbell, and Charles Diminnie, San
Angelo, TX

For n ≥ 1, let σ (n) denote the sum of the positive divisors of n. The problem is to find
all positive integers n < 1000 such that σ (n) = 2k for some integer k ≥ 0. We note first
that n = 1 is a solution since σ (1) = 1 = 20. For the remainder, we will assume that
n ≥ 2. Our key result is the following:

Lemma. If p is prime and k and e are positive integers such that σ (pe) = 2k, then
e = 1 and p = 2k − 1 (i.e., p is a Mersenne prime).

Proof. First of all, p 6= 2 since σ (2e) = 1 + 2 + . . . + 2e, which is odd. Further, since p
must be odd,

2k = σ (pe) = 1 + p + . . . + pe

implies that e is also odd. It follows that

2k = (1 + p) +
(
p2 + p3

)
+
(
p4 + p5

)
+ . . . +

(
pe−1 + pe

)
= (1 + p)

(
1 + p2 + p4 + . . . + pe−1

)
. (∗)

Then, 1 + p divides 2k and 1 + p > 1, which leads us to conclude that 1 + p = 2m, with
1 ≤ m ≤ k. Statement (*) reduces to

2k−m = 1 + p2 + p4 + . . . + pe−1.

If e ≥ 3, then m < k and using the same reasoning as above, we get

2k−m =
(
1 + p2

)
+
(
p4 + p6

)
+ . . . +

(
pe−3 + pe−1

)
=

(
1 + p2

) (
1 + p4 + . . . + pe−3

)
,

which implies that 1 + p2 = 2i, for some positive integer i ≤ k −m. Thus,

2i = 1 + p2 = 1 + (2m − 1)2 = 22m − 2m+1 + 2,
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or
2i−1 = 22m−1 − 2m + 1 = 2m

(
2m−1 − 1

)
+ 1.

This requires i = m = 1, which is impossible since this would entail
p = 2m − 1 = 2− 1 = 1. Therefore, e = 1 and 2k = σ (p) = p + 1, i.e., p = 2k − 1.

To return to our problem, we may write

n = pe1
1 pe2

2 · · · pem
m

for distinct primes p1, . . . , pm and positive integers e1, . . . , em. Since σ is multiplicative
and pe1

1 , . . . , pem
m are pairwise relatively prime,

2k = σ (n) = σ (pe1
1 ) σ (pe2

2 ) · · ·σ (pem
m ) .

Further, for i = 1, . . . ,m, σ (pei
i ) ≥ pi + 1 > 1. Hence, there are positive integers

k1, . . . , km such that
σ (pei

i ) = 2ki

for i = 1, . . . ,m. By the Lemma, e1 = e2 = . . . = em = 1 and

pi = 2ki − 1

for i = 1, . . . ,m. Therefore, n = p1p2 · · · pm, where each pi is a distinct Mersenne prime.

To solve our problem, we need to find all Mersenne primes < 1000 and all products of
distinct Mersenne primes for which the product < 1000. The Mersenne primes < 1000
are 3, 7, 31, and 127. All solutions of σ (n) = 2k, with n < 1000, are listed below.

n σ (n)
1 20

3 22

7 23

21 = 3 · 7 25

31 25

93 = 3 · 31 27

127 27

217 = 7 · 31 28

381 = 3 · 127 29

651 = 3 · 7 · 31 210

889 = 7 · 127 210

Also solved by Brian D. Beasley, Clinton, SC; Pat Costello, Richmond, KY;
Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong Kong, China;
David E. Manes, Oneonta, NY; Charles McCracken, Dayton, OH; Boris
Rays, Brooklyn, NY; Harry Sedinger, St. Bonaventure, NY; Raúl A. Simón,
Santiago, Chile; David Stone and John Hawkins (jointly), Statesboro, GA;
Tran Trong Hoang Tuan (student, Bac Lieu High School for the Gifted), Bac
Lieu City, Vietnam, and the proposer.

• 5129: Proposed by Kenneth Korbin, New York, NY
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Given prime number c and positive integers a and b such that a2 + b2 = c2, express in
terms of a and b the lengths of the legs of the primitive Pythagorean Triangles with
hypotenuses c3 and c5, respectively.

Solution 1 by Howard Sporn, Great Neck, NY

A Pythagorean Triple (a, b, c) can be represented by the complex number a + bi, with
modulus c. By multiplying two Pythagorean Triples in this form, one can generate
another Pythagorean Triple. For instance, the complex representation of the 3-4-5
triangle is 3 + 4i. By multiplying the complex number by itself, (and taking the absolute
value of the real and imaginary parts), one obtains the 7-24-25 triangle:

(3 + 4i)(3 + 4i) = −7 + 24i

72 + 242 = 252

By cubing a + bi, one can obtain a Pythagorean Triple whose hypotenuse is c3.

(a + bi)3 = (a + bi)2(a + bi)

= (a2 − b2 + 2abi)(a + bi)

= a3 − 3ab2 + i
(
3a2 − b3

)
One can verify that the modulus of this complex number is

(
a2 + b2

)3 = c3. Thus we
obtain the Pythagorean Triple

(∣∣a3 − 3ab2
∣∣ , ∣∣3a2b− b3

∣∣ , c3
)
.

That this Pythagorean Triangle is primitive can be seen by factoring the lengths of the
legs:

a3 − 3ab2 = a
(
a2 − 3b2

)
, and

3a2b− b3 = b
(
3a2 − b2

)
,

generally have no factors in common.

Example: If we let (a, b, c) = (3, 4, 5), we obtain the Pythagorean Triple (117, 44, 125).

By a similar procedure , one can obtain a Pythagorean Triple whose hypotenuse is c5.

(a + bi)5 = (a + bi)3 (a + bi) (a + bi)

=
[
a3 − 3ab2 + i

(
3a2b− b3

)]
(a + bi) (a + bi)

=
[
a4 − 6a2b2 + b4 + i

(
4a3b− 4ab3

)]
(a + bi)

= a5 − 10a3b2 + 5ab4 + i
(
5a4b− 10a2b3 + b5

)
.

Thus we obtain the Pythagorean Triple(∣∣∣a5 − 10a3b2 + 5ab4
∣∣∣ , ∣∣∣5a4b− 10a2b3 + b5

∣∣∣ , c5
)

.

Example: If we let (a, b, c) = (3, 4, 5), we obtain the Pythagorean Triple
(237, 3116, 3125).
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Solution 2 by Brian D. Beasley, Clinton, SC

Given positive integers a, b, and c with c prime and c2 = a2 + b2, we may assume
without loss of generality that a < b < c. Also, we note that c must be odd and that c
divides neither a nor b. Using the classic identity

(w2 + x2)(y2 + z2) = (wy + xz)2 + (wz − xy)2,

we proceed from c2 = a2 + b2 to obtain c4 = (−a2 + b2)2 + (2ab)2. Similarly, we have

c6 = (−a3 + 3ab2)2 + (3a2b− b3)2

and

c10 = (a5 − 10a3b2 + 5ab4)2 + (−5a4b + 10a2b3 − b5)2.

Thus the leg lengths for the Primitive Pythagorean Triangle (PPT) with hypotenuse c3

are

m = | − a3 + 3ab2| and n = |3a2b− b3|,
while the leg lengths for the PPT with hypotenuse c5 are

q = |a5 − 10a3b2 + 5ab4| and r = | − 5a4b + 10a2b3 − b5|.

To show that these triangles are primitive, we first note that (−a2 + b2, 2ab, c2) is a
PPT, since c cannot divide 2ab. Next, we prove that (m, n, c3) is also a PPT: If not,
then c divides both a(−a2 + 3b2) and b(3a2 − b2), so c divides −a2 + 3b2 and 3a2 − b2;
thus c divides the linear combination (−a2 + 3b2) + 3(3a2 − b2) = 8a2, a contradiction.
Similarly, we prove that (q, r, c5) is a PPT: If not, then c divides both
a(a4 − 10a2b2 + 5b4) and b(−5a4 + 10a2b2 − b4), so c divides a4 − 10a2b2 + 5b4 and
−5a4 + 10a2b2 − b4; thus c divides the linear combinations

(a4 − 10a2b2 + 5b4) + 5(−5a4 + 10a2b2 − b4) = 8a2(−3a2 + 5b2)

and

5(a4 − 10a2b2 + 5b4) + (−5a4 + 10a2b2 − b4) = 8b2(−5a2 + 3b2).

But this means that c divides the linear combination
3(−3a2 + 5b2)− 5(−5a2 + 3b2) = 16a2, a contradiction.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie
(jointly), San Angelo, TX; David E. Manes, Oneonta, NY, and the proposer.

• 5130: Proposed by Michael Brozinsky, Central Islip, NY

In Cartesianland, where immortal ants live, calculus has not been discovered. A bride
and groom start out from A(−a, 0) and B(b, 0) respectively where a 6= b and a > 0 and
b > 0 and walk at the rate of one unit per second to an altar located at the point P on
line L : y = mx such that the time that the first to arrive at P has to wait for the other
to arrive is a maximum. Find, without calculus, the locus of P as m varies through all
nonzero real numbers.

Solution 1 by Michael N. Fried, Kibbtuz Revivim, Israel

Let OQ be the line y = mx. Since it is the total time which must be a minimum, we
might as well consider the minimum time from A to a point P on OQ and then from P
to B. But since the speed is equal and constant for both the bride and groom the
minimum time will be achieved for the path having the minimum distance. This, as is
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well-known, occurs when 6 APO = 6 BPQ. Accordingly, OP is the external angle

bisector of angle APB, and, thus,
BP

AP
=

BO

OA
= a constant ratio. So, P lies on a circle

(an Apollonius circle) whose diameter is OAC, where OC is the harmonic mean between
OA and OB.

Solution 2 by the proposer

Since the bride and groom go at the same rate, then for a given m, P is the point such
that the maximum of ||AQ| − |BQ|| for points Q on L occurs when Q is P . Let A′

denote the reflection of A about this line.

Now since ||AQ| − |BQ|| = ||A′Q| − |BQ|| ≥ |A′B| (from the triangle inequality) we have
this maximum must be |A′B| since it is attained when P is the point of intersection of
the line through B and A′, with L. (Note that the line through A′ and B is not parallel
to L because that would imply that the origin is the midpoint of AB because the line
through the midpoint of AA′ and the midpoint of AB is parallel to the line through A′

and B.)

Let M be the midpoint of segment AA′. Now, since triangles A′PM and APM are
congruent, L is the angle bisector at P in triangle ABP , and since an angle bisector of
an angle of a triangle divides the opposite side into segments proportional to the

adjacent sides we have
AP

BP
=

a

b
(1).

Denoting P by P (X, Y ) we thus have Y 6= 0 and thus X 6= 0 and so from (1)√
(X + a)2 + (mX)2√
(X − b)2 + (mX)2

=
a

b
,

and since X 6= 0, we have by squaring both sides and solving for X, that

X =
2ab

(a− b)(m2 + 1)
, and thus

Y =
2mab

(a− b)(m2 + 1)

are parametric equations of the locus. Now replacing m by
Y

X
and simplifying, we obtain

X =
2abX2

(X2 + Y 2)(a− b)

which is just the circle
(X2 + Y 2)(a− b) = 2abX

with the endpoints of the diameter deleted. The endpoints of the diameter occur when

Y = 0; that is, at (0, 0), and at
(

2ab

a− b
, 0
)

.

Note that if the line x = 0 were a permissible altar line, then we would add (0, 0) to the
locus, while if the x−axis were a permissible altar line, then the union of the rays

(−∞,−a] ∪ [b,∞) would be part of the locus, and in particular, this includes
(

2ab

a− b
, 0
)

.

6



• 5131: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let a, b, c be positive real numbers. Prove that

a + b + 3c

3a + 3b + 2c
+

a + 3b + c

3a + 2b + 3c
+

3a + b + c

2a + 3b + 3c
≥ 15

8
.

Solution 1 by Bruno Salgueiro Fanego, Viveiro, Spain

The inequality is homogeneous, so we can assume without loss of generality that
a + b + c = 1, being equivalent to

1 + 2c

3− c
+

1 + 2b

3− b
+

1 + 2a

3− a
≥ 15

8
,

which is Jensen’s inequality f(c) + f(b) + f(a) ≥ 3f

(
c + b + a

3

)
applied to the convex

function f (x) =
1 + 2x

3− x
and the numbers c, b, a on the interval (0, 1); equality occurs if

and only if a = b = c.

Solution 2 by Javier Garćıa Cavero (student, Mathematics Club of the
Instituto de Educación Secundaria- No 1), Requena-Valencia, Spain

Changing the variables, that is to say, calling

x = 2a + 3b + 3c,
y = 3a + 2b + 3c, and
z = 3a + 3b + 2c

it is easy to see, solving the corresponding system of equations, that

a + b + c =
x + y + z

8
and that

a =
−5x + 3y + 3z

8

b =
3x− 5y + 3z

8
, and

c =
3x + 3y − 5z

8
.

The numerators of the fractions will thus be:

a + b + 3c =
7x + 7y − 9z

8
, a + 3b + c =

7x− 9y + 7z

8
, 3a + b + c =

−9x + 7y + 7z

8

Replacing everything in the initial expression:

a + b + 3c

3a + 3b + 2c
+

a + 3b + c

3a + 2b + 3c
+

3a + b + c

2a + 3b + 3c

=
7x + 7y − 9z

8z
+

7x− 9y + 7z

8y
+
−9x + 7y + 7z

8x
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=
(

7x

8z
+

7y

8z
+
−9
8

)
+
(

7x

8y
+
−9
8

+
7z

8y

)
+
(−9

8
+

7y

8x
+

7z

8x

)

= 3 ·
(−9

8

)
+

7
8

(
x

z
+

y

z
+

x

y
+

z

y
+

y

x
+

z

x

)

−27
8

+
7
8

((
x

z
+

z

x

)
+
(

y

z
+

z

y

)
+
(

x

y
+

y

x

))

≥ −27
8

+
42
8

=
15
8

,

since r +
1
r
≥ 2. Equality occurs for x = y = z and, therefore, for a = b = c.

Solution 3 by Kee-Wai Lau, Hong Kong, China

Since
a + b + 3c

3a + 3b + 2c
+

b + c + 3a

3b + 3c + 2a
+

c + a + 3b

3c + 3a + 2b
− 15

8

=
7
(
6a3 + 6b3 + 6c3 − a2b− ab2 − b2c− bc2 − c2a− ca2 − 12abc

)
8 (3a + 3b + 2c) (3b + 3c + 2a) (3c + 3a + 2b)

=
7
(

(3a + 3b + 2c)(a− b)2 + (3b + 3c + 2a)(b− c)2 + (3c + 3a + 2b)(c− a)2
)

8(3a + 3b + 2c)(3b + 3c + 2a)(3c + 3a + 2b)

≥ 0,

the inequality of the problem follows.

Solution 4 by P. Piriyathumwong (student, Patumwan Demonstration
School), Bangkok, Thailand

The given inequality is equivalent to the following:∑
cyc

(
a + b + 3c

3a + 3b + 2c
− 5

8

)
≥ 0 ⇔

∑
cyc

(−a− b + 2c

3a + 3b + 2c

)
≥ 0

⇔
∑
cyc

(
(c− a) + (c− b)

3a + 3b + 2c

)
≥ 0

⇔
∑
cyc

(a− b)
(

1
2a + 3b + 3c

− 1
3a + 2b + 3c

)
≥ 0

⇔
∑
cyc

(a− b)2

(2a + 3b + 3c)(3a + 2b + 3c)
≥ 0,
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which is obviously true.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie
(jointly), San Angelo, TX; Valmir Bucaj (student, Texas Lutheran
University), Seguin, TX; Paul M. Harms, North Newton, KS; David E.
Manes, Oneonta, NY; Paolo Perfetti, Department of Mathematics,
University “Tor Vergata”, Rome, Italy; Boris Rays, Brooklyn, NY; Tran
Trong Hoang Tuan (student, Bac Lieu High School for the Gifted), Bac Lieu
City, Vietnam, and the proposer.

• 5132: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Find all all functions f : C → C such that f(f(z)) = z2 for all z ∈ C.

Solution by Kee-Wai Lau, Hong Kong, China

We show that no such functions f(z) exist by considering the values of
f(1), f(−1), f(i), f(−i), where i =

√
−1.

From the given relation
f(f(z)) = z2 (1)

we obtain f(f(f(z))) = f(z2) so that

(f(z))2 = f
(
z2
)

. (2)

Replacing z by z2 in (2), we get

f(z4) = (f(z))4 . (3)

By putting z = 1 into (2), we obtain f(1) = 0 or 1. If f(1) = 0, then by putting z = i
into (3), we get 0 = f(i4) = (f(i))4, so that f(i) = 0. Putting z = i into (1) we get
f(0) = −1 and putting z = 0 into (2) we obtain (−1)2 = −1 which is false. It follows
that

f(1) = 1. (4)

By putting z = −1 into (2) we get (f(−1))2 so that f(−1) = −1 or 1.

If f(−1) = −1 then by (1), −1 = f(f(−1)) = (−1)2 = 1, which is false.

Hence,
f(−1) = 1. (5)

By putting z = i into (3), we are (f(i))4 = 1, so that f(i) = −1, 1, i,−i.

If f(i) = ±1, then by (1), (4) and (5), 1 = f(f(i)) = i2 = −1, which is false.

If f(i) = i, then by (1), i = f (f((i)) = −1, which is also false. Hence,

f(i) = −i (6)

By putting z = −i into (3), we have (f(−i))4 = 1, so that f(−i) = −1, 1, i,−i.

If f(−i) = ±1, then by (1), (4), and (5) 1 = f(f(−i)) = (−i)2 = −1, which is false.

If f(−i) = ±i, then by (1) and (6) −i = f(f(−i)) = (−i)2 = −1, which is also false.
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Thus f(−i) can take no value, showing that no such f(z) exists.

Also solved by Howard Sporn and Michael Brozinsky (jointly), of Great
Neck and Central Islip, NY (respectively), and the proposer.

• 5133: Proposed by Ovidiu Furdui, Cluj, Romania

Let n ≥ 1 be a natural number. Calculate

In =
∫ 1

0

∫ 1

0
(x− y)ndxdy.

Solutions 1 and 2 by Valmir Bucaj (student, Texas Lutheran University),
Seguin, TX

Solution 1) We first calculate
∫ 1

0
(x− y)ndx .

Letting u = x− y we get∫ 1

0
(x− y)n =

∫ 1−y

−y
undu

=
1

n + 1

[
(1− y)n+1 + (−1)n yn+1

]
.

Now,

In =
∫ 1

0

∫ 1

0
(x− y)ndxdy

=
1

n + 1

∫ 1

0

[
(1− y)n+1 + (−1)n yn+1

]
dy

=


2

(n + 1)(n + 2)
: n even

0 : n odd

Solution 2) Using the fact that

(x− y)n =
n∑

k=0

Ck
n

(
−1
)

kxn−kyk,

we get

In =
∫ 1

0

∫ 1

0
(x− y)ndxdy

=
∫ 1

0

∫ 1

0

n∑
k=0

Ck
n (−1)k xn−kykdxdy
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=
n∑

k=0

Ck
n (−1)k 1

(n− k + 1)(k + 1)
.

Comment: Comparing Solution 1 with Solution 2, we obtain an interesting side-result:
namely the identity

n∑
k=0

Ck
n (−1)k 1

(n− k + 1)(k + 1)
=


2

(n + 1)(n + 2)
: n even

0 : n odd

,

which one can verify directly, as well.

Solution 3 by Paul M. Harms, North Newton, KS

Let f(x, y) = (x− y)n. The integration region is the square in the x, y plane with
vertices at (0, 0), (1, 0), (1, 1), and (0, 1). The line y = x divides this region into two
congruent triangles. I will use the terms lower triangle and upper triangle, for these two
congruent triangles.

The points (x, y) and (y, x) are symmetric with respect to the line y = x. Let n be an
odd integer. For each point (x, y) in the lower (upper) triangle we have a point (y, x) in
the upper (lower) triangle such that f(y, x) = −f(x, y). Thus the value of In = 0 when
n is an odd integer.

When n is an even integer, f(y, x) = f(x, y) and the value of the original double integral
should equal 2

∫ 1
0

∫ 1
y (x− y)ndxdy where the region of the integration is the lower

triangle. The first integration of the last double integral yields

(x− y)n+1

n + 1

∣∣∣∣1
y

=
(1− y)n+1

n + 1
.

The second integration of the double integral then yields the expression

−2(1− y)n+2

(n + 1)(n + 2)

∣∣∣∣1
0

=
2

(n + 1)(n + 2)
= In

when n is an even integer.

Also solved by Brian D. Beasley, Clinton, SC; Michael C. Faleski, University
Center, MI; G. C. Greubel, Newport News, VA; David E. Manes, Oneonta,
NY; Paolo Perfetti, Department of Mathematics, University “Tor Vergata,”
Rome, Italy; James Reid (student, Angelo State University), San Angelo,
TX; Raúl A. Simón, Santiago, Chile; David Stone and John Hawkins
(jointly), Statesboro, GA, and the proposer.
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