
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
March 15, 2013

• 5236: Proposed by Kenneth Korbin, New York, NY

Given positive numbers (a, b, c, x, y, z) such that

x2 + xy + y2 = a,
y2 + yz + z2 = b,
z2 + zx+ x2 = c.

Express the value of the sum x+ y + z in terms of a, b, and c.

• 5237: Proposed by Michael Brozinsky, Central Islip, NY

Let 0 < R < 1 and 0 < S < 1, and define

a =

√
−2
√

1− S2
√

1−R2 + 2 + 2RS,

b =
√
−R− S + 1 +RS, and

c =
√
R+ S + 1 +RS.

Determine whether there is tuple (R,S) such that a, b, and c are sides of a triangle.

• 5238: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

It is fairly well-known that (1111 . . . 1)9, a number written in base 9 with an arbitrary
number of digits 1, always evaluates decimally to a triangular number. Find another
base b and a single digit d in that base, such that (ddd . . . d)b, using k digits d, has the
same property, ∀k ≥ 1.

• 5239: Proposed by Enkel Hysnelaj, University of Technology, Sydney, Australia and
Elton Bojaxhiu, Kriftel, Germany

Determine all functions f : <− {−3,−1, 0, 1, 3} → <, which satisfy the relation

f(x) + f

(
13 + 3x

1− x

)
= ax+ b,

where a and b are given arbitrary real numbers.
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• 5240: Proposed by José Luis Dı́az-Barrero, Polytechnical University of Catalonia,
Barcelona, Spain

Let x be a positive real number. Prove that

x[x]

(x+ {x})2
+

x{x}
(x+ [x])2

>
1

8
,

where [x] and {x} represent the integral and fractional part of x, respectively.

• 5241: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let α ≥ 0 be a real number. Calculate

lim
n→∞

(∫ 1

0

n
√
xn + α dx

)n
.

————————————————————–

Solutions

• 5218: Proposed by Kenneth Korbin, New York, NY

Find positive integers x and y such that,

2x− y −
√

3x2 − 3xy + y2 = 2013

with (x, y) = 1.

Solution 1 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX

If we re-write the equation in the form 2x− y − 2013 =
√

3x2 − 3xy + y2 (1) and then
square both sides and simplify, we get successively

x2 − 8052x+ (2013)2 + 4026y − xy = 0, and

(x− 4026)2 − (x− 4026) y = 3 (2013)2 .

To simplify further, substitute w = x− 4026 to obtain

w2 − wy = 3 (2013)2 (2)
or w (w − y) = 3 (2013)2 . (3)

Since w and w − y are integers, the problem can be solved by considering all
factorizations of

3 (2013)2 = 33112612 (4)

into a product of two integers. Also, since y > 0, we have w − y < w in each instance.

Before proceeding, we note that (2) implies that

y =
w2 − 3 (2013)2

w
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and we get

2x− y − 2013 = 2 (w + 4026)− w2 − 3 (2013)2

w
− 2013

=
w2 + 6093w + 3 (2013)2

w
.

Since

w2 + 6093w + 3 (2013)2 =

(
w +

6039

2

)2

+
3

4
(2013)2 > 0

for all w, we end up with 2x− y − 2013 < 0 when w < 0. Hence, when w − y < w < 0,
(1) implies that we will get extraneous solutions.

Next, suppose that (w,w − y) > 1. Then, there is a prime p which is a divisor of both w
and w − y. Conditions (3) and (4) tell us that p = 3, 11, or 61 and hence, p divides
2013. First of all, p divides both w and w − y implies that p divides w − (w − y) = y.
Also, since p divides both w and 2013, it follows that p divides w + 2 (2013) = x. As a
result, when (w,w − y) > 1, we have (x, y) > 1 as well. Therefore, we may restrict our
work to the case where (w,w − y) = 1.

Finally then, we need only consider (3) and (4) with 0 < w − y < w and (w,w − y) = 1.
The full set of solutions is given in the following table.

w − y w x = w + 4026 y = w − (w − y)

1 33112612 12, 160, 533 12, 156, 506

33 112612 454, 267 450, 214

112 33612 104, 493 100, 346

33112 612 7, 747 454

With a good software package, it’s possible to check that all of these are solutions of (1)
with (x, y) = 1.

Solution 2 by Adrian Naco, Polytechnic University, Tirana, Albania

The left side of the equation can be transformed to

2x− y −
√

(2x− y)2 − x(x− y) = 2013 ⇒ x(x− y) > 0 ⇒ 0 < y < x. (1)

(since x and y are positive integers). Further more,

√
3x2 − 3xy − y2 = 2x− y − 2013 ⇒ 2x− y − 2013 ≥ 0 ⇔ 2x− y ≥ 2013. (2)

Solving the equation we have that

3x2 − 3xy − y2 = (2x− y − 2013)2 ⇒ x2 − xy − 2 · 2013y − 4 · 2013x+ 20132 = 0

⇒ y = x− 2 · 2013− 3 · 20132

x− 2 · 2013
. (3)
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where

3 · 20132

x− 2 · 2013
= r ∈ Z ⇒ x = 2 · 2013 +

3 · 20132

r
, (4)

and since
3 · 20132

r
= s ∈ Z ⇒ rs = 3 · 20132 = 33 · 112 · 612. (5)

Considering (3), (4), (5) we have that,

x = 2 · 2013 + s
y = s− r
rs = 3 · 20132 = 33 · 112 · 612 where r , s ∈ Z .

The general structure of r and s is

r = 3α111α261α3 and s = 3β111β261β3 where

α1 + β1 = 3, α2 + β2 = 2, α3 + β3 = 2.

From (1) and (2)

x > y > 0 ⇒ s > r > −2 · 2013

2x− y − 2013 > 0 ⇒ s+ r > −3 · 2013

⇒ s+
3 · 20132

s
> −3 · 2013

⇒ s2 + 3 · 2013s+ 3 · 20132

s
> 0

⇒ s > 0 ⇒ r > 0.

Furthermore, if (r, s) = p then p|2013 and consequently p|x and p|y. Since
(x, y) = 1 then p = 1, resulting that there are only eight possible combinations
for r and s (since for each combination we have αi = 0 or βi = 0, ∀i ∈ {1, 2, 3})

r = 30110610 and s = 33112612
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r = 33110610 and s = 30112612

r = 30112610 and s = 33110612

r = 30110612 and s = 33112610

r = 33112610 and s = 30110612

r = 33110612 and s = 30112610

r = 30112612 and s = 33110610

r = 33112612 and s = 33112612,

and since s > r, there are only four possible combinations, each of them generates a solution
for the given equation. More concretely the four solutions are

r = 30110610, s = 33112612 ⇒ x = 12160533, y = 12156506

r = 33110610, s = 30112612 ⇒ x = 454267, y = 450214

r = 30112610, s = 33110612 ⇒ x = 104493, y = 100346

r = 33112610, s = 30110612 ⇒ x = 7747, y = 454.

Comment by David Stone and John Hawkins of Georgia Southern University, Statesboro, GA.
The above four points (x, y) are called visible points (i.e., the view from the origin is not blocked
by any other lattice point.)

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland Beach,
FL; Paul M. Harms, North Newton, KS; Enkel Hysnelaj, University of Technol-
ogy, Sydney Australia and Elton Bojaxhiu, Kriftel, Germany; Kee-Wai Lau, Hong
Kong, China; David E. Manes, SUNY College at Oneonta, Oneonta, NY; Albert
Stadler Herrliberg, Switzerland; David Stone and John Hawkins, Georgia Southern
University, Statesboro, GA, and the proposer.

5219: Proposed by David Manes and Albert Stadler, SUNY College at Oneonta, Oneonta, NY
and Herrliberg, Switzerland (respectively)

Let k and n be natural numbers. Prove that:

n∑
j=1

cosk
(

(2j − 1)π

2n+ 1

)
=



2n+ 1

2k+1

(
k

k/2

)
− 1

2
, k even

1

2
, k odd.

Solution by Kee-Wai Lau, Hong Kong, China
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Since the stated result is not true for (k, n) = (3, 1), (6, 1), we modify it to

n∑
j=1

cosk
(

(2j − 1)π

2n+ 1

)
=



2n+ 1

2k+1

(
k

k/2

)
− 1

2
, k = 2, 4, 6, . . . , 4n

1

2
, k = 1, 3, 5, . . . , 2n− 1.

Let i =
√
−1 and θ = θ(j, n) =

(2j − 1)π

2n+ 1
. By the binomial theorem we have

n∑
j=1

cosk θ =
1

2

n∑
j=−n

cosk θ +
(−1)k−1

2

=
1

2k+1

n∑
j=−n

(
eiθ + e−iθ

)
+

(−1)k−1

2

=
1

2k+1

n∑
j=−n

k∑
t=0

(
k

t

)
ei(k−2t)θ +

(−1)k−1

2

=
1

2k+1

k∑
t=0

(
k

t

)
n∑

j=−n
ei(k−2t)θ +

(−1)k−1

2
.

For k = 2, 4, 6, . . . , 4n and t = 0, 1, 2, . . . , k,
2(k − 2t)

2n+ 1
is not an integer unless t =

k

2
. So for

t =
k

2
, we have

n∑
j=−n

ei(k−2)θ = 2n + 1 and for t = 0, 1, 2, . . . ,
k − 2

2
,
k + 2

2
, . . . , k, we have

n∑
j=−n

ei(k−2t)θ =
1− e2(k−2t)πi

1− e(2(k−2t)πi)/(2n+1)
= 0.

This proves the first part of the modified statement of the problem.

For k = 1, 3, 5, . . . , 2n− 1 and t = 0, 1, 2, . . . , k,
2(k − 2t)

2n+ 1
is not an integer and so

n∑
j=−n

ei(k−2t)θ =

0, and this proves the second part of the modified statement of the problem.

Editor’s note: David Manes and Anastasios Kotronis, noted the error in the statement of the
problem, but the problem had already been posted. Each went on to correct the mistake and
each made reference to a general technique for solving such problems that is discussed in a
paper by Mircea Merca (of the University of Craiova in Romania) entitled: “A Note on Cosine
Power Sums” that appeared in the Journal of Integer Sequences, Vo. 15(2012); Article 12.5.3.
Other solvers of 5219 parenthetically referenced the need to modify of the original statement.
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Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Anastasios Kotronis, Athens,
Greece; Adrian Naco, Polytechnic University, Tirana, Albania; Paolo Perfetti, De-
partment of Mathematics, “Tor Vergata” University, Rome, Italy, and the pro-
posers.

5220: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

The pentagonal numbers begin 1, 5, 12, 22 . . . and are generally defined by Pn =
n(3n− 1)

2
, ∀n ≥

1. The triangular numbers begin 1, 3, 6, 10, . . . and are generally defined by Tn =
n(n+ 1)

2
,∀n ≥

1. Find the greatest common divisor, gcd(Tn, Pn).

Solution 1 by Bruno Salgueiro Fanego, Viveiro, Spain

Case 1: If n is even, n = 2k for some k ≥ 1, so, using properties of the gcd, the Euclidean
algorithm, and the fact that 2k + 1 is odd =⇒ gcd(2k + 1, 4) = 1, we obtain

gcd(Pn, Tn) = gcd (k (6k − 1) , k (2k + 1))

= k gcd (6k − 1, 2k + 1)

= k gcd (2k + 1,−4)

= k gcd (2k + 1, 4)

= k =
n

2
.

Case 2: If n is odd, then
n

4
gives a remainder of 1 or 3; so n ≡ 1 (mod 4) or n ≡ 3 (mod 4).

We have two cases to consider.

Case 2.1: n = 4k + 1 for some k ≥ 0; then

gcd(Pn, Tn) = gcd (n(2k + 1), n (6k + 1))

= n gcd (2k + 1, 6k + 1)

= n gcd (−2, 2k + 1)

= n gcd (2, 2k + 1)

= n.

Case 2.2 n = 4k + 3 for some k ≥ 0; then

gcd(Pn, Tn) = gcd (n(6k + 4), n (2k + 2))
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= 2n gcd (3k + 2, k + 1)

= 2n gcd (k + 1,−1)

= 2n gcd (k + 1, 1)

= 2n.

Hence,

gcd (Pn, Tn) =


n

2
n even

n n≡ 1 (mod 4)
2n n≡ 3 (mod 4)

Solution 2 by Albert Stadler, Herrliberg, Switzerland

If n is even then,

(Pn, Tn) =
n

2
(3n− 1, n+ 1) =

n

2
(3n− 1− 3(n+ 1), n+ 1) =

n

2
(−4, n+ 1) =

n

2
.

If n ≡ 1 (mod 4) then,

(Pn, Tn) = n

(
3n− 1

2
,
n+ 1

2

)
= n

(
3n− 1

2
− 3 · n+ 1

2
,
n+ 1

2

)
= n

(
−2,

n+ 1

2

)
= n.

If n ≡ 3 (mod 4) then

(Pn, Tn) = n

(
3n− 1

2
,
n+ 1

2

)
= n

(
3n− 1

2
− 3 · n+ 1

2
,
n+ 1

2

)
= n

(
−2,

n+ 1

2

)
= 2n.

These three lines can be summarized in one formula by, e.g.,

(Pn, Tn) =
n

2

(
2 sin2 πn

2
− sin

πn

2
+ 1

)
.

Solution 3 by Brian D. Beasley, Presbyterian College, Clinton, SC

Editor’s comment: Brian generalized the problem for the nth r-gonal number.

Given integers n ≥ 1 and r ≥ 3, the nth r-gonal number is defined by

prn = 1
2n[(r − 2)n− (r − 4)].

Find the following greatest common divisors for a) gcd(prn, p
r+1
n ) b) gcd(prn, p

r+2
n ), r even,

and c) gcd(prn, p
r+2
n ), r odd.
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a) We show that gcd(prn, p
r+1
n ) =

{
n/2 if n is even
n if n is odd

.

If n = 2m for some positive integer m, then prn = m(2mr−4m−r+4) and pr+1
n = m(2mr−2m−

r+3). Since 2mr−2m−r+3 = (2mr−4m−r+4)+(2m−1), 2mr−4m−r+4 = (2m−1)(r−2)+2,
and gcd(2m − 1, 2) = 1, we also have gcd(2mr − 2m − r + 3, 2mr − 4m − r + 4) = 1. Hence
gcd(prn, p

r+1
n ) = m = n/2.

If n = 2m+ 1 for some nonnegative integer m, then prn = (2m+ 1)(mr − 2m+ 1) and pr+1
n =

(2m+ 1)(mr−m+ 1). Since mr−m+ 1 = mr−2m+ 1 + (m) and mr−2m+ 1 = m(r−2) + 1,
we have gcd(mr −m+ 1,mr − 2m+ 1) = 1. Hence gcd(prn, p

r+1
n ) = 2m+ 1 = n.

b) We show that for even r, gcd(prn, p
r+2
n ) = n.

Write r = 2m for some positive integer m. Then prn = n(mn − m − n + 2) and pr+2
n =

n(mn−m+1). Sincemn−m+1 = (mn−m−n+2)+(n−1) andmn−m−n+2 = (n−1)(m−1)+1,
we have gcd(mn−m+ 1,mn−m− n+ 2) = 1. Hence gcd(prn, p

r+2
n ) = n.

c) We show that for odd r, gcd(prn, p
r+2
n ) =


n/2 if n is even
n if n ≡ 1 (mod 4)
2n if n ≡ 3 (mod 4)

.

Write r = 2m + 1 for some nonnegative integer m. Then prn = n(2mn − n − 2m + 3)/2 and
pr+2
n = n(2mn + n − 2m + 1)/2. Since 2mn + n − 2m + 1 = (2mn − n − 2m + 3) + (2n − 2),

2mn− n− 2m+ 3 = (2n− 2)(m− 1) + (n+ 1), and 2n− 2 = (n+ 1)(2)− (4), we have three
cases:

If n is even, then gcd(n+ 1, 4) = 1, so gcd(prn, p
r+2
n ) = (n/2)(1) = n/2.

If n ≡ 1 (mod 4), then gcd(n+ 1, 4) = 2, so gcd(prn, p
r+2
n ) = (n/2)(2) = n.

If n ≡ 3 (mod 4), then gcd(n+ 1, 4) = 4, so gcd(prn, p
r+2
n ) = (n/2)(4) = 2n.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo State
University, San Angelo, TX; Ed Gray, Highland Beach, FL; Paul M. Harms, North
Newton, KS; Enkel Hysnelaj, University of Technology, Sydney Australia and El-
ton Bojaxhiu, Kriftel, Germany; Kee-Wai Lau, Hong Kong, China; David Manes,
SUNY College at Oneonta, Oneonta, NY; Melfried Olson, University of Hawaii,
Honolulu, HI; Boris Rays, Brooklyn, NY; Neculai Stanciu “George Emil Palade”
Secondary School, Buzău, Romania and Titu Zvonaru, Comănesti, Romania; David
Stone and John Hawkins of Georgia Southern University, Statesboro, GA, and the
proposer.

5221: Proposed by Michael Brozinsky, Central Islip, NY
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If x, y and z are positive numbers find the maximum of√
(x+ y + z) · x · y · z

(x+ y)2 + (y + z)2 + (x+ z)2
.

Solution 1 by Enkel Hysnelaj, University of Technology, Sydney, Australia and
Elton Bojaxhiu, Kriftel, Germany

Normalising the expression, the problem will be equivalent to finding the maximum of
√
xyz

(x+ y)2 + (y + z)2 + (x+ z)2

subject to x+ y + z = 1.
Using the AM-GM Inequality we have

3
√
xyz ≤ x+ y + z

3
=

1

3
⇒ √xyz ≤

(
1

3

) 3
2

and

(x+ y)2 + (y + z)2 + (x+ z)2 ≥ 1

3
((x+ y) + (y + z) + (x+ z))2 =

4

3

Applying these two results we have

√
xyz

(x+ y)2 + (y + z)2 + (x+ z)2
≤

(
1

3

)3

2

4

3

=
1

4
√

3
.

So the maximum value of the required expression is
1

4
√

3
, and this is achieved when x = y = z.

Solution 2 by Kee-Wai Lau, Hong Kong, China

Denote the expression of the problem by f . We show that the maximum of f is

√
3

12
.

Since f equals the constant

√
3

12
whenever x = y = z > 0, so it suffices to show that for

x, y, z > 0, we have

f ≤
√

3

12
. (1)

From f =

√
(x+ y + z) · xyz

(x− y)2 + (y − z)2 + (x− z)2 + 4(xy + yz + zx)
≤
√

(x+ y + z) · xyz
4(xy + yz + zx)

, we see

that (1) will follow from
(x+ y + z)xyz

(xy + yz + zx)2
≤ 1

3
, or equivalently

(xy + yz + zx)2 − 3xyz(x+ y + z) ≥ 0. (2)
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But (2) in fact holds because its left side equals

x2(y − z)2 + y2(z − x)2 + z2(x− y)2

2
.

This completes the solution.

Solution 3 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo State
University, San Angelo, TX

Since x, y, z > 0, the Arithmetic - Geometric Mean Inequality implies that

xyz ≤
(
x+ y + z

3

)3

=
(x+ y + z)3

27
,

with equality if and only if x = y = z. Hence,

√
(x+ y + z) · xyz ≤

√
(x+ y + z)4

27
=

√
3

9
(x+ y + z)2 , (1)

with equality if and only if x = y = z.

Next, we use the strict convexity of f (t) = t2 and Jensen’s Theorem to get

(x+ y)2 + (y + z)2 + (x+ z)2 ≥ 3

[
(x+ y) + (y + z) + (x+ z)

3

]2
=

4

3
(x+ y + z)2 . (2)

Here, equality results if and only if x+ y = y + z = x+ z, i.e., if and only if x = y = z.

Therefore, by (1) and (2),√
(x+ y + z) · xyz

(x+ y)2 + (y + z)2 + (x+ z)2
≤
√

3

9
· 3

4
· (x+ y + z)2

(x+ y + z)2
=

√
3

12
,

with equality if and only if x = y = z. It follows that the maximum value of√
(x+ y + z) · xyz

(x+ y)2 + (y + z)2 + (x+ z)2

is

√
3

12
and this is attained precisely when x = y = z.

Solution 4 by Paolo Perfetti, Department of Mathematics, “Tor Vergata” Univer-
sity, Rome, Italy

We prove that the maximum is
√

3/12. To this end

√
(x+ y + z)xyz

(x+ y)2 + (y + z)2 + (z + x)2
=

√
(x+ y + z)xyz

(x+ y + z)2 + (x2 + y2 + z2)
≤
√

3

12
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and this is implied by

√
(x+ y + z)

(x+ y + z)3/2

33/2

(x+ y + z)2 +
(x+ y + z)2

3

≤
√

3

12

which is actually an identity and this completes the proof.

Also solved by Bruno Salgueiro Fanego (two solutions), Viveiro, Spain; Ed Gray,
Highland Beach, FL; Paul M. Harms, North Newton, KS; Adrian Naco, Polytechnic
University,Tirana, Albania; Boris Rays, Brooklyn, NY; Albert Stadler, Herrliberg,
Switzerland, and the proposer.

5222: Proposed by José Luis Dı́az-Barrero, Polytechnical University of Catalonia, Barcelona,
Spain

Calculate without the aid of a computer the following sum

∞∑
n=0

(−1)n (n+ 1)(n+ 3)

(
1

1 + 2
√

2i

)n
, where i =

√
−1.

Solution by David E. Manes, SUNY College at Oneonta, Oneonta, NY

The sum of the series is
164 + 103

√
2i

108
.

Consider the complex function f(z) =
1

1 + z
that is represented by the power series

f(z) =
1

1 + z
=
∞∑
n=0

(−1)nzn

on the interior of the unit circle |z| < 1. Since

∣∣∣∣ 1

1 + 2
√

2i

∣∣∣∣ =
1

3
, the power series and all of its

derivatives converge absolutely for z =
1

1 + 2
√

2i
. For the first derivative

f ′ (z) =
−1

(1 + z)2
=
∞∑
n=1

(−1)nnzn−1 =
∞∑
n=0

(−1)n+1 (n+ 1) zn.

Therefore,
1

(1 + z)2
=
∞∑
n=0

(−1)n(n+ 1)zn.

Differentiating again, one obtains

−2

(1 + z)3
=
∞∑
n=1

(−1)n(n+ 1)zn−1 =
∞∑
n=0

(−1)n+1(n+ 2)(n+ 1)zn.
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Therefore,
2

(1 + z)3
=
∞∑
n=0

(−1)n(n2 + 3n+ 2)zn.

Let z =
1

1 + 2
√

2i
. Then

1

1 + z
=

1

1 + 1
1+2
√
2i

=
1 + 2

√
2i

2(1 +
√

2i)
=

(1 + 2
√

2i)(1−
√

2i)

2(1 +
√

2i)(1−
√

2i)
=

5 +
√

2i

6
.

1

(1 + z)2
=

(
1

1 + z

)2

=
1

36
(5 +

√
2i)2 =

23 + 10
√

2i

36
,

2

(1 + z)3
=

(
23 + 10

√
2i

36

)(
5 +
√

2i

3

)
.

Consequently, if z =
1

1 + 2
√

2i
, then

∞∑
n=0

(−1)n(n+ 1)(n+ 3)

(
1

1 + 2
√

2i

)n
=

∞∑
n=0

(−1)n(n2 + 3n+ 2)zn +
∞∑
n=0

(−1)n(n+ 1)zn

=
2

(1 + z)3
+

1

(1 + z)2

=

(
23 + 10

√
2i

36

)(
5 +
√

2i

3

)
+

(
23 + 10

√
2i

36

)

=

(
23 + 10

√
2i

36

)(
1 +

5 +
√

2i

3

)

=

(
23 + 10

√
2i

36

)(
8 +
√

2i

3

)

=

(
164 + 103

√
2i

108

)
,

as claimed.

Also solved by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain;
Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo State University, San
Angelo, TX; Bruno Salgueiro Fanego, Viveiro, Spain; Enkel Hysnelaj, University of
Technology, Sydney, Australia and Elton Bojaxhiu, Kriftel, Germany; Anastasios
Kotronis, Athens, Greece; Kee-Wai Lau, Hong Kong, China; Adrian Naco, Poly-
technic University,Tirana, Albania; Paolo Perfetti, Department of Mathematics,
“Tor Vergata” University, Rome, Italy; Albert Stadler, Herrliberg, Switzerland;
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David Stone and John Hawkins of Georgia Southern University, Statesboro, GA,
and the proposer.

5223: Proposed by Ovidiu Furdui,Technical University of Cluj-Napoca, Cluj-Napoca, Romania

a) Find the value of
∞∑
n=0

(−1)n
(

1

n+ 1
− 1

n+ 2
+

1

n+ 3
− · · ·

)
.

b) More generally, if x ∈ (−1, 1] is a real number, calculate

∞∑
n=0

(−1)n
(
xn+1

n+ 1
− xn+2

n+ 2
+
xn+3

n+ 3
− · · ·

)
.

Solution by Albert Stadler, Herrliberg, Switzerland

We have

k−1∑
j=0

(−1)j
xn+1+j

n+ 1 + j
=

k−1∑
j=0

(−1)j
∫ x

0
tn+jdt

=

∫ x

0
tn

1− (−t)k

1 + t
dt

=

∫ x

0

tn

1 + t
dt+O

(∫ x

0
tn+kdt

)

=

∫ x

0

tn

1 + t
dt+O

(
1

n+ k + 1

)
.

We let k tend to infinity and get

∞∑
j=0

(−1)j
xn+1+j

n+ 1 + j
=

∫ x

0

tn

1 + t
dt.

Then

k−1∑
j=0

(−1)n
∫ x

0

tn

1 + t
dt =

∫ x

0

1

1 + t
· 1− (−1)k

1 + t
dt

=

∫ x

0

1

(1 + t)2
dt+O

(∫ x

0
tkdt

)

=

[ −1

1 + t

]x
0

+O

(
1

k + 1

)
.
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So,
∞∑
n=0

(−1)n

 ∞∑
j=0

(−1)j
xn+1+j

n+ 1 + j

 =
x

1 + x
.

Letting x = 1 implies that the sum of the first series is
1

2
.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland Beach,
FL; Anastasios Kotronis, Athens, Greece; Kee-Wai Lau, Hong Kong, China; Adrian
Naco, Polytechnic University, Tirana, Albania; Paolo Perfetti, Department of
Mathematics, “Tor Vergata” University, Rome, Italy, and the proposer.
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