
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
October 15, 2011

• 5164: Proposed by Kenneth Korbin, New York, NY

A triangle has integer length sides (a, b, c) such that a− b = b− c. Find the dimensions
of the triangle if the inradius r =

√
13.

• 5165: Proposed by Thomas Moore, Bridgewater, MA

“Dedicated to Dr. Thomas Koshy, friend, colleague and fellow Fibonacci enthusiast.”

Let σ(n) denote the sum of all the different divisors of the positive integer n. Then n is
perfect, deficient, or abundant according as σ(n) = 2n, σ(n) < 2n, or σ(n) > 2n. For
example, 1 and all primes are deficient; 6 is perfect, and 12 is abundant. Find infinitely
many integers that are not the product of two deficient numbers.

• 5166: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let a, b, c be lengths of the sides of a triangle ABC. Prove that(
3a+b +

c

b
3−b

)(
3b+c +

a

c
3−c

)(
3c+a +

b

a
3−a

)
≥ 8.

• 5167: Paolo Perfetti, Department of Mathematics, University “Tor Vergata,” Rome,
Italy

Find the maximum of the real valued function

f(x, y) = x4 − 2x3 − 6x2y2 + 6xy2 + y4

defined on the set D = {(x, y) ∈ <2 : x2 + 3y2 ≤ 1}.

• 5168: Proposed by G. C. Greubel, Newport News, VA

Find the value of an in the series

7t+ 2t2

1− 36t+ 4t2
= a0 +

a1

t
+
a2

t2
+ · · ·+ an

tn
+ · · · .

• 5169: Proposed by Ovidiu Furdui, Cluj, Romania

Let n ≥ 1 be an integer and let i be such that 1 ≤ i ≤ n. Calculate:∫ 1

0
· · ·
∫ 1

0

xi

x1 + x2 + · · ·+ xn
dx1 · · · dxn.
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Solutions

• 5146: Proposed by Kenneth Korbin, New York, NY

Find the maximum possible value of the perimeter of an integer sided triangle with
in-radius r =

√
13.

Solution 1 by Kee-Wai Lau, Hong Kong, China

Let the lengths of the sides of the triangle be a, b, and c with c ≤ b ≤ a.

Let x = b+ c− a, y = c+ a− b, z = a+ b− c so that x, y, z are integers and
0 < x ≤ y ≤ z.

It is well known that
1
2

√
xyz

x+ y + z
or

xyz

x+ y + z
= 52.

From xyz < xy(x+ y + z), we see that xy > 52 and from xy <
3xyz

x+ y + z
, we have

xy ≤ 156. Since a =
y + z

2
, b =

z + x

2
, c =

x+ y

2
, so we have to find positive integers

x, y satisfying 
x ≤ y
1 ≤ x ≤ 12
52 < xy ≤ 156

such that z =
52(x+ y)
xy − 52

is a positive integer greater than or equal to y and that x, y, z

are of the same parity. With the help of a computer we find that

(x, y, z) = (2, 28, 390), (2, 30, 208), (2, 40, 78), (2, 52, 54), (4, 14, 234), (4, 26, 30), (6, 10, 104), (6, 16, 26)

are the only solutions. Since a+ b+ c = x+ y + z, so the maximum possible value of the
perimeter of an integer sided triangle with in-radius r =

√
13 is 420.

Solution 2 by Brian D. Beasley, Clinton, SC

We designate the integer side lengths of the triangle by a, b, and c. We also let
x = a+ b− c, y = c+ a− b, and z = b+ c− a and note that x+ y + z = a+ b+ c. Then
the formula for the in-radius r of a triangle becomes

r =
1
2

√
(a+ b− c)(c+ a− b)(b+ c− a)

a+ b+ c
=

1
2

√
xyz

x+ y + z
.

For the given triangle, we thus have 52(x+ y + z) = xyz. Then xyz is even; combined
with the fact that x, y, and z have the same parity, this implies that all three are even.
Writing x = 2u, y = 2v, and z = 2w, we obtain 13(u+ v + w) = uvw. Then 13 divides
uvw, so without loss of generality, we assume w = 13k for some natural number k. This
produces v = (u+ 13k)/(uk − 1). Using this equation, a computer search reveals eight
solutions for (u, v, w) (with u ≤ v) and hence for (a, b, c):

(u, v, w) = (2, 15, 13) =⇒ (a, b, c) = (17, 15, 28) =⇒ perimeter = 60
(u, v, w) = (3, 8, 13) =⇒ (a, b, c) = (11, 16, 21) =⇒ perimeter = 48

(u, v, w) = (1, 27, 26) =⇒ (a, b, c) = (28, 27, 53) =⇒ perimeter = 108
(u, v, w) = (1, 20, 39) =⇒ (a, b, c) = (21, 40, 59) =⇒ perimeter = 120
(u, v, w) = (3, 5, 52) =⇒ (a, b, c) = (8, 55, 57) =⇒ perimeter = 120

(u, v, w) = (1, 15, 104) =⇒ (a, b, c) = (16, 105, 119) =⇒ perimeter = 240
(u, v, w) = (2, 7, 117) =⇒ (a, b, c) = (9, 119, 124) =⇒ perimeter = 252

(u, v, w) = (1, 14, 195) =⇒ (a, b, c) = (15, 196, 209) =⇒ perimeter = 420

2



Thus the maximum value of the perimeter is 420.

Also solved by Paul M. Harms, North Newton, KS; David Stone and John
Hawkins (jointly), Statesboro, GA, and the proposer.

• 5147: Proposed by Kenneth Korbin, New York, NY

Let {
x = 5N2 + 14N + 23 and
y = 5(N + 1)2 + 14(N + 1) + 23

where N is a positive integer. Find integers ai such that

a1x
2 + a2y

2 + a3xy + a4x+ a5y + a6 = 0.

Solution 1 by G. C. Greubel, Newport News, VA

The equations for x and y are given by x = 5n2 + 14n+ 23 and y = 5n2 + 24n+ 42. We
are asked to find the values of ai such that the equation

a1x
2 + a2y

2 + a3xy + a4x+ a5y + a6 = 0

is valid. In order to do so we need to calculate the values of x2, y2, and xy. For this we
have

x2 = 25n4 + 140n3 + 426n2 + 644n+ 529
y2 = 25n4 + 240n3 + 996n2 + 2016n+ 1764
xy = 25n4 + 190n3 + 661n2 + 1140n+ 966.

Using the above results we then have the equation

0 = 25(a1 + a2 + a3)n4 + 10(14a1 + 24a2 + 19a3)n3

+(426a1 + 996a2 + 661a3 + 5a4 + 5a5)n2

+2(322a1 + 1008a2 + 570a3 + 7a4 + 12a5)n
+(529a1 + 1764a2 + 966a3 + 23a4 + 42a5 + a6).

From this we have five equations for the coefficients ai given by

0 = a1 + a2 + a3

0 = 14a1 + 24a2 + 19a3

0 = 426a1 + 996a2 + 661a3 + 5a4 + 5a5

0 = 322a1 + 1008a2 + 570a3 + 7a4 + 12a5

0 = 529a1 + 1764a2 + 966a3 + 23a4 + 42a5 + a6.

From 0 = 14a1 + 24a2 + 19a3 we have 0 = 14(a1 + a2 + a3) + 10a2 + 5a3 = 5(2a2 + a3),
where we used the fact that 0 = a1 + a2 + a3. This yields a3 = −2a2. Using this result
in 0 = a1 + a2 + a3 yields a2 = a1. The three remaining equations can be reduced to

0 = 20a1 + a4 + a5

0 = 190a1 + 7a4 + 12a5

0 = 361a1 + 23a4 + 42a5 + a6.
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Solving this system we see that

a1 = a1, a2 = a1, a3 = −2a1, a4 = −10a1, a5 = −10a1, a6 = 289a1.

We now verify that the above coefficients work.

a1x
2 + a2y

2 + a3xy + a4x+ a5y + a6 = 0, becomes

a1

(
x2 + y2 − 2xy − 10x− 10y + 289

)
= 0, and since a1 6= 0

x2 + y2 − 2xy − 10x− 10y + 289 = 0, and

(x− y)2 − 10(x+ y) + 289 = 0.

From the values of x and y presented to us in terms of n at the start of the problem, we
see that x− y = −(10n+ 19) and x+ y = 10n2 + 38n+ 65.
Substituting these values into the above equations we obtain:

0 = (x− y)2 − 10(x+ y) + 289
= (10n+ 19)2 − 10(10n2 + 38n+ 65) + 289
= (100n2 + 380n+ 361)− (100n2 + 380n+ 650) + 289
= 361− 650 + 289
= 0.

We have thus verified that for the coefficients we have obtained, and for the vaules of x
and y that are given, a1x

2 + a2y
2 + a3xy + a4x+ a5y + a6 = 0.

Solution 2 by Kee-Wai Lau, Hong Kong, China

By putting N = 1, 2, 3, 4, 5, we obtain the system of equations
1764a1 + 5041a2 + 2982a3 + 42a4 + 71a5 + a6 = 0
5041a1 + 12100a2 + 7810a3 + 71a4 + 110a5 + a6 = 0
12100a1 + 25281a2 + 17490a3 + 110a4 + 159a5 + a6 = 0 (1)
25281a1 + 47524a2 + 34662a3 + 159a4 + 218a5 + a6 = 0
47524a1 + 82369a2 + 62566a3 + 218a4 + 287a5 + a6 = 0.

If a1 = 0, then (1) reduces to
5041a2 + 2982a3 + 42a4 + 71a5 + a6 = 0
12100a2 + 7810a3 + 71a4 + 110a5 + a6 = 0
25281a2 + 17490a3 + 110a4 + 159a5 + a6 = 0 (2)
47524a2 + 34662a3 + 159a4 + 218a5 + a6 = 0
82369a2 + 62566a3 + 218a4 + 287a5 + a6 = 0.

Since the determinant

∣∣∣∣∣∣∣∣∣∣∣

5041 2982 42 71 1
12100 7810 71 110 1
25281 17490 110 159 1
47524 34662 159 218 1
82369 62566 218 287 1

∣∣∣∣∣∣∣∣∣∣∣
= −18000000, so (2) has the

unique solution a2 = a3 = a4 = a5 = a6 = 0.
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If a1 6= 0, we write a2 = a1b2, a3 = a1b3, a4 = a1b4, a5 = a1b5, a6 = a1b6, so that (1)
becomes 

1764 + 5041b2 + 2982b3 + 42b4 + 71b5 + b6 = 0
5041 + 12100b2 + 7810b3 + 71b4 + 110b5 + b6 = 0
12100 + 25281b2 + 17490b3 + 110b4 + 159b5 + b6 = 0 (3)
25281 + 47524b2 + 34662b3 + 159b4 + 218b5 + b6 = 0
47524 + 82369b2 + 62566b3 + 218b4 + 287b5 + b6 = 0.

By Cramer’s rule, we find the unique solution of (3) to be

b2 = 1, b3 = −2, b4 = −10, b5 = −10, b6 = 289.

It follows that the general solution to (1) is

a1 = k, a2 = k, a3 = −2k, a4 = −10k, a5 = −10k, a6 = 289k, (4)

where k is any integer. It can be checked readily by direct expansion that
kx2 + ky2 − 2kxy − 10kx− 10ky + 289k = 0 for any positive integer N , and so the
general solution to the equation of the problem is given by (4).

Solution 3 by Bruno Salgueiro Fanego, Viveiro, Spain

As in the published solutions to SSMJ problem 5144, we first compute

y−x = 5
[
(N + 1)2 −N2

]
+14 (N + 1−N)+23−23 = 5 (2N + 1)+14 = 10N+19 (1)

From x = 5N2 + 14N + 23 that is 5N2 + 14N + 23− x = 0, one obtains

N1,2, =
−14±

√
142 − 20(23− x)

10
=
−7±

√
5x− 66
5

and since N is a positive integer, we choose N =
−7 +

√
5x− 66
5

(2).

Substituting (2) into (1) gives

y − x = 2
(
−7 +

√
5x− 66

)
+ 19 = 5 + 2

√
5x− 66. (3)

From (3) one obtains

(y − x− 5)2 =
(
2
√

5x− 66
)2
, that is

x2 + y2 − 2xy − 10x− 10y + 289 = 0 (4)

Relation (4) shows that it suffices to take the following integers for ai

a1 = a2 = 1; a3 = −2; a4 = a5 = −10; a6 = 289

Comment: Relation (4) shows that for any positive integer N , all of the points with
coordinates (x, y)=(uN , uN+1) for uN = 5N2 + 14N + 23, are points situated on the
parabola (*) with equation

(1 X Y )

 289 −5 −5
−5 1 −1
−5 −1 1

 1
X
Y

 = 0.
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(∗) Because det

 289 −5 −5
−5 1 −1
−5 −1 1

 = 100 6= 0 and det
(

1 −1
−1 1

)
= 0.

Solution 4 by David Stone and John Hawkins, Statesboro, GA

We will show that the proscribed points (x, y) lie on the conic

x2 + y2 − 2xy − 10xy − 10y + 289 = 0.

This is a parabola. In fact, it is the parabola x =
1

2
√

2
y2 roatated counterclockwise

π

4

and translated “up the diagonal y = x” by a distance
289
20

√
2, having its vertex at(

289
20

,
289
20

)
.

We will actually consider the more general problem{
x = aN2 + bN + c
y = a (N + 1)2 + b(N + 1) + c

with the restrictions on N removed.
Treating these as parametric equations, we can eliminate the parameter N (without
getting bogged down in the quadratic formula).

Expanding the expression for y gives

y = aN2 + 2aN + a+ bN + b+ c

=
(
aN2 + bN + c

)
+ 2aN + a+ b

= x+ 2aN + a+ b.

Solving for N gives N =
y − x− (a+ b)

2a
.

Substituting back into the expression for x:

x = a

(
y − x− a− b

2a

)2

+ b

(
y − x− a− b

2a

)
+ c,

which simplifies to

(1) x2 + y2 − 2xy − 2ax− 2ay +
(
a2 − b2 + 4ac

)
= 0.

This is our solution for the general problem. So we do indeed have a quadratic equation
for our figure; the discriminate equals zero.

From calculus,we know that a 45◦ rotation will remove the xy term. The transformation
equations are

x =
1√
2

(
x′ − y′

)
and y =

1√
2

(
x ′ + y ′

)
Substituting these into Equation (1), we get

(x′ − y′)2

2
+

(x′ + y′)2

2
−2

(x′ − y′)(x′ + y′)
2

− 2a√
2

(
x′ − y′

)
− 2a√

2

(
x′ + y′

)
+
(
a2 − b2 + 4ac

)
= 0.
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This simplifies to

2
(
y′
)2 − 4a√

2
x′ +

(
a2 − b2 + 4ac

)
= 0.

This becomes more familiar as

x′ − a2 − b2 + 4ac
2a
√

2
=

1
a
√

2

(
y′
)2
.

We recognize a nice parabola in the x′, y′ plane. In fact, if we translate to the new

origin,

(
a2 − b2 + 4ac

2a
√

2
, 0

)
(in the x′, y′ plane) and let

x′′ = x′ − a2 − b2 + 4ac
2a
√

2
and y ′′ = y ′

our equation becomes

x′′ =
1

a
√

2

(
y′′
)2
.

Substituting the values a = 5, b = 14, c = 23 produces the solution to the given problem.

Comment 1: We see that x and y are interchangeable in Equation (1), reflecting the
fact that the line y = x is the axis of symmetry of our parabola. Therefore, more lattice
points than originally mandated fall on the parabola.

For convenience, let un = aN2 + bN + c. By the given condition, for any integer N , the
point (uN , uN+1) lies on the parabola. By symmetry, (uN+1, uN ) also lies on the
parabola.

Comment 2: We see that this sequence satisfies the first order non-linear recurrence:
uN+1 = uN + (2N + 1) a+ b. We have shown that the points (uN , uN+1), N ∈ Z, lie on
the parabola given by Equation (1) (as do the points (uN+1, uN )). This is reminiscent of
the result that pairs of Fibonacci numbers (FN , FN+1) lie on the hyperbolas
y2 − xy − x2 = ±1. In fact, such pairs are the only lattice points on these hyperbolas.

So we wonder if the points (uN , uN+1) and (uN+1, uN ) are the only lattice points on the
parabola given by Equation (1).

Also solved by Brian D. Beasley, Clinton, SC; Edwin Gray, Highland Beach,
FL; Paul M. Harms, North Newton, KS; David E. Manes, Oneonta, NY;
Boris Rays, Brooklyn, NY; Raúl A. Simón, Santiago, Chile, and the
proposer.

• 5148: Proposed by Pedro Pantoja (student, UFRN), Natal, Brazil

Let a, b, c be positive real numbers such that ab+ bc+ ac = 1. Prove that

a2

3
√
b(b+ 2c)

+
b2

3
√
c(c+ 2a)

+
c2

3
√
a(a+ 2b)

≥ 1.

Solution 1 by David E. Manes, Oneonta, NY

Let L =
a2

3
√
b(b+ 2c)

+
b2

3
√
c(c+ 2a)

+
c2

3
√
a(a+ 2b)

. To prove that L ≥ 1, we will use
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Jensen’s inequality that states if λ1, λ2 . . . , λn are positive numbers satisfying

λ1 + λ2 + . . .+ λn = 1, and x1, x2, . . . , xn are any n points in an interval where f is
continuous and convex, then

λ1f(x1) + λ2f(x2) + · · ·+ λnf(xn) ≥ f
(
λ1x1 + λ2x2 + · · ·+ λnxn

)
.

The function f(x) =
1
3
√
x

is continuous and convex on the interval (0,∞). Let

α = a2 + b2 + c2 λ1 =
a2

α
λ2 =

b2

α
λ3 =

c2

α

x1 = b2 + 2bc x2 = c2 + 2ac x3 = a2 + 2ab

Then λ1 + λ2 + λ3 = 1 and Jensen’s inequality implies

1
α
L =

a2

α
f
(
b2 + 2bc

)
+
b2

α
f
(
c2 + 2ac

)
+
c2

α
f
(
a2 + 2ab

)

≥ f

(
a2
(
b2 + 2bc

)
+ b2

(
c2 + 2ac

)
+ c2

(
a2 + 2ab

)
α

)

= 3

√
α

a2b2 + b2c2 + c2a2 + 2a2bc+ 2ab2c+ 2abc2

= 3

√
α

(ab+ bc+ ac)2
= 3
√
α.

Hence, L ≥ α4/3=
(
a2 + b2 + c2

)4/3 ≥ 1 since the inequality

(a− b)2 + (b− c)2 + (c− a)2 ≥ 0 with the constraint ab+ bc+ ac = 1 implies

a2 + b2 + c2 ≥ 1. Note that equality occurs if and only if a = b = c =
1√
3

.

Solution 2 by Enkel Hysnelaj, University of Technology, Sydney, Australia
and Elton Bojaxhiu, Kriftel, Germany

Using Cauchy-Schwarz inequality we have,(
3

√
b(b+ 2c) + 3

√
c(c+ 2a) + 3

√
a(a+ 2b)

)(
a2

3
√
b(b+ 2c)

+
b2

3
√
c(c+ 2a)

+
c2

3
√
a(a+ 2b)

)
≥ (a+b+c)2,

which implies that,

a2

3
√
b(b+ 2c)

+
b2

3
√
c(c+ 2a)

+
c2

3
√
a(a+ 2b)

≥ (a+ b+ c)2
3
√
b(b+ 2c) + 3

√
c(c+ 2a) + 3

√
a(a+ 2b)

.

Using the fact that the function f(x) = 3
√
x is a concave function, since the second

derivative is negative, we have that any three numbers x, y, z, according to Jensen’s

8



inequality, satisfy the inequality f(x) + f(y) + f(z) ≤ 3f
(
x+ y + z

3

)
and applying this

we have

a2

3
√
b(b+ 2c)

+
b2

3
√
c(c+ 2a)

+
c2

3
√
a(a+ 2b)

≥ (a+ b+ c)2
3
√
b(b+ 2c) + 3

√
c(c+ 2a) + 3

√
a(a+ 2b)

≥ (a+ b+ c)2

3 3

√(
b(b+ 2c) + c(c+ 2a) + a(a+ 2b)

3

)

=
(a+ b+ c)2

3
3
√

3
3

√
(a+ b+ c)2

So it is enough to prove that

(a+ b+ c)2

3
3
√

3
3

√
(a+ b+ c)2

≥ 1, which implies

(a+ b+ c)2

3

√
(a+ b+ c)2

≥ 3
3
√

3

(a+ b+ c)2 ≥ 3

Using the given condition and the AM-GM inequality we have

(a+ b+ c)2 = a2 + b2 + c2 + 2ab+ 2bc+ 2ac

≥ 3ab+ 3bc+ 3ac

= 3(ab+ bc+ ac)
= 3

and this is the end of the proof.

Solution 3 by Andrea Fanchini, Cantú, Italy

Recall Holder’s inequality that states that if aij , 1 ≤ i ≤ m, 1 ≤ j ≤ n are positive real
numbers, then:

m∏
i=1

 n∑
j=1

aij

 ≥
 n∑

j=1

m

√√√√ m∏
i=1

aij

m

.

Setting n = 3 and m = 4 and using this inequality we have

(∑
cyc

a2

3
√
b2 + 2bc

)(∑
cyc

a2

3
√
b2 + 2bc

)(∑
cyc

a2

3
√
b2 + 2bc

)(∑
cyc

a2
(
b2 + 2bc

))
≥
(
a2 + b2 + c2

)4
,
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and being that a2 + b2 + c2 ≥ ab+ bc+ ca,(∑
cyc

a2

3
√
b2 + 2bc

)(∑
cyc

a2

3
√
b2 + 2bc

)(∑
cyc

a2

3
√
b2 + 2bc

)(∑
cyc

a2
(
b2 + 2bc

))
≥ (ab+ bc+ ca)4 = 1

because (∑
cyc

a2
(
b2 + 2bc

))
= (ab+ bc+ ca)2 = 1,

and so the proposed inequality holds.

Also solved by Arkady Alt, San Jose, CA; Kee-Wai Lau, Hong Kong, China;
Paolo Perfetti, Department of Mathematics, University “Tor Vergata,”
Rome, Italy, and the proposer.

• 5149: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

A regular n-gon A1, A2 · · · , An (n ≥ 3) has center F , the focus of the parabola y2 = 2px,
and no one of its vertices lies on the x axis. The rays FA1, FA2, · · · , FAn cut the
parabola at points B1, B2, · · · , Bn.

Prove that
1
n

n∑
k=1

FB2
k > p2.

Solution by Ángel Plaza (University of Las Palmas de Gran Canaria) and
Javier Sánchez-Reyes (University of Castilla-La Mancha), Spain

In polar coordinates (r, θ) centered at the focus the parabola is given by
r = p/(1 + cos θ). Defining the arguments θk = θn + 2kπ/n for k = 1, 2, . . . , n
corresponding to the vertices Ak of the polygon, we have to prove that

1
n

n∑
k=1

p2

(1 + cos θk)2
> p2,

1
n

n∑
k=1

1
(1 + cos θk)2

> 1,

where θk 6= 0 and θk 6= π. Since the function f(x) = 1/x2 is strictly convex and∑n
k=1 cos θk = 0, for example because the sum of all the nth complex roots of unity is

zero, it follows that

1
n

n∑
k=1

1
(1 + cos θk)2

>

1 +

n∑
k=1

cos θk

n


−2

= 1.

Also solved by Raúl A. Simón, Santiago, Chile; David Stone and John
Hawkins (jointly), Statesboro, GA and the proposer.
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• 5150: Proposed by Mohsen Soltanifar (student, University of Saskatchewan), Saskatoon,
Canada

Let {An}∞n=1, (An ∈Mn×n(C))be a sequence of matrices such that det(An) 6= 0, 1 for all
n ∈ N . Calculate:

lim
n→∞

nn ln(|det(An)|)
ln (| det (adj◦n (An)) |)

,

where adj◦n refers to adj ◦ adj ◦ · · · ◦ adj, n times, the nth iterate of the classical adjoint.

Solved 1 by the proposer

A simple calculation of adj◦n (A) , m = 1, 2, · · · , 5 using equalities:

(i) adj(A) ·A = A · adj(A) = det(A) · In×n.

(ii) det(A−1) = (det(A))−1

(iii) det(kA) = kn det(A)

suggests the following conjecture:

adjom (A) = det (A)Pm(n)A(−1)m
; Pm(n) =

(n− 1)m + (−1)m−1

n
, m, n ∈ N (∗∗)

We prove the conjecture by induction on the positive integer m. The assertion trivially
holds for the case m = 1. Let it hold for some positive integer m > 1. Then

adjom+1 (A) = adj (adjom (A))

= det (adjom (A)) (adjom (A))−1

= det
(
det(A)Pm(n)A(−1)m

) (
det (A)Pm(n)A(−1)m

)−1

= det (A)(n−1)Pm(n)+(−1)m

(A)(−1)m+1

.

Besides,

Pm+1(n) = (n− 1)Pm(n) + (−1)m =
(n− 1)m+1 + (−1)m

n
,

proving the assertion for positive integer m+ 1. Accordingly, using (∗∗) we have

lim
n→∞

nn ln (|det(An)|)
ln (|det(adjon(An))|)

= lim
n→∞

nn ln (| det(An)|)
ln
(
| det(det(An)Pn(n)A

(−1)n

n )|
)

= lim
n→∞

nn ln (|det(An)|)
ln
(
|(det(An)nPn(n) det (An

(−1)n
)|
)

= lim
n→∞

nn ln (|det(An)|)
ln
(
|(det(An)nPn(n)+(−1)n|)

11



= lim
n→∞

nn

nPn(n) + (−1)n

= lim
n→∞

(
n

n− 1

)n

= e.

Solution 2 by David Stone and John Hawkins, Statesboro, GA

We shall find a formula for adj◦n (nA) and then show the limit is e.

First recall some properties of the inverse and the classical adjoint, where A is n× n and
invertible and c a non-zero scalar.

(1) adj(A) = det(A)A−1

(2) adj (A)−1 =
1

det(A)
A = adj

(
A−1

)
(3) det [adj(A)] = [detA)]n−1

(4) det(cA) = cn det(A)

(5) (cA)−1 =
1
c
A−1

(6) adj(cA) = cn−1adj(A)

Then we see

(7) adj◦2 (A) = adj [adj(A)]

= det [adj(A)] [adj(A)]−1 by (1)

= [det(A)]n−1 1
det(A)

A by (3) and (2)

= [det(A)]n−2A.

Continuing with our calculations, we have

(8) adj◦3 (A) = adj
[
adj◦2(A)

]
= adj

[
[det(A)]n−2A

]
by (7)

=
{

[det(A)]n−2
}n−1

adj(A) by (6)

= [det(A)](n−1)(n−2) det(A)A−1by (1)

= [det(A)]n
2−3n+3A−1

12



We observe that repeated applications of adj will produce terms of the form
[det(A)][pk(n)A(−1)k, where pi(n) is a polynomial of degree k − 1 in n.

Specifically, for k = 1, 2, 3, . . . , n− 1, we have

(9) adj◦(k+1) (A) = adj
[
adj◦k(A)

]
= adj

[
[det(A)]pk(n)A(−1)k

]
by induction

=
{

[det(A)]pk(n)
}n−1

adj
(
A(−1)k

)
by (6)

= [det(A)](n−1)pk(n) det
(
A(−1)k

) [
A(−1)k

]−1
by (1)

= [det(A)](n−1)pk(n)+(−1)k

A(−1)k+1

Therefore, we can recursively compute the polynomials which give the exponent on
det(A) and obtain a concrete formula for adj(A) : pk+1(n) = (n− 1)pk(n) + (−1)k.

By (1) adj(A) = det(A)A−1, so p1(n) = 1.

By (7) adj◦2 (A) = [det(A)]n−2A, so p2(n) = n − 2.

Then p3(n) = (n− 1)p2(n) + (−1)2 = (n− 1)(n− 2) + 1 = n2− 3n+ 3, agreeing with (8).

Continuing, we find that
p4(n) = n3 − 4n2 + 6n− 4 and
p5(n) = n4 − 5n3 + 10n2 − 10n+ 5.

The appearance of the binomial coefficients is unmistakable. We deduce that, for
k = 1, 2, 3, . . . , n,

pk(n) =
(n− 1)k + (−1)k−1

n
, a polynomial of degree k − 1.

The capstone of this sequence of polynomials: pn(n) =
(n− 1)n + (−1)n−1

n
, allows us to

calculate adj◦n(A) as:

(10) adj◦n (A) = [det(A)]
(n− 1)n + (−1)n−1

n
A(−1)n

.

Therefore, An ∈Mn×n(C),

det (adj◦n (An)) = det

[det(A)]
(n− 1)n + (−1)n−1

n A(−1)n

 by(10)

=

[det(A)]
(n− 1)n + (−1)n−1

n


n

det
[
A(−1)n

]
by (4)

= [det(A)](n− 1)n + (−1)n−1
det

[
A(−1)n

]
13



= [det(A)](n− 1)n + (−1)n−1 + (−1)n

= [det(A)](n− 1)n.

Thus,
ln (|det (adj◦n (An))|) = ln

∣∣∣[det(An)](n−1)n
∣∣∣ = (n− 1)n ln |det(An)|,

so, for n ≥ 2,

nn ln (|det(An)|)
ln (|det (adj◦n(An))|)

=
nn ln (|det(An)|)

(n− 1)n ln (|det(An))|
=

nn

(n− 1)n
=
(

n

n− 1

)n

.

That is, the individual An has disappeared and our complex fraction has become very
simple.

Now it is easy to show by calculus that the limit is e.

• 5151: Proposed by Ovidiu Furdui, Cluj, Romania

Find the value of
∞∏

n=1

(√
π

2
· (2n− 1)!!

√
2n+ 1

2nn!

)(−1)n

.

More generally, if x 6= nπ is a real number, find the value of

∞∏
n=1

(
x

sinx

(
1− x2

π2

)
· · ·
(

1− x2

(nπ)2

))(−1)n

.

Solution by the proposer

The first product equals

√
2
√

2
π

and the second one equals
2 sin

x

2
x

. Recall the infinite

product representation for the sine function

sinx = x
∞∏

n=1

(
1− x2

n2π2

)
.

Since the first product can be obtained from the second one, when x = π/2, we
concentrate on the calculation of the second product. Let

S2n =
2n∑

k=1

(−1)k

(
ln

(
1− x2

π2

)
+ · · ·+ ln

(
1− x2

k2π2

)
+ ln

x

sinx

)

= −
(

ln

(
1− x2

π2

)
+ ln

x

sinx

)
+

(
ln

(
1− x2

π2

)
+ ln

(
1− x2

22π2

)
+ ln

x

sinx

)
· · ·
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−
(

ln

(
1− x2

π2

)
+ ln

(
1− x2

22π2

)
+ · · ·+ ln

(
1− x2

(2n− 1)2π2

)
+ ln

x

sinx

)

+

(
ln

(
1− x2

π2

)
+ ln

(
1− x2

22π2

)
+ · · ·+ ln

(
1− x2

(2n− 1)2π2

)
+ ln

(
1− x2

(2n)2π2

)
+ ln

x

sinx

)

= ln

((
1− x2

(2π)2

)(
1− x2

(4π)2

)
· · ·
(

1− x2

(2nπ)2

))

= ln

((
1− (x/2)2

π2

)(
1− (x/2)2

(2π)2

)
· · ·
(

1− (x/2)2

(nπ)2

))
.

Letting n tend to infinity in the preceding equality we get that lim
n→∞

S2n = ln
2 sin (x/2)

x
,

and the problem is solved

Also solved by Paolo Perfetti, Department of Mathematics, University “Tor
Vergata,” Rome, Italy.
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