
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
October 15, 2015

• 5355: Proposed by Kenneth Korbin, New York, NY

Find the area of the convex cyclic pentagon with sides

(13, 13, 12
√

3 + 5, 20
√

3, 12
√

3− 5).

• 5356: Proposed by Kenneth Korbin, New York, NY

For every prime number p there is a circle with diameter 4p4 + 1. In each of these
circles, it is possible to inscribe a triangle with integer length sides and with area

(8p3)(p+ 1)(p− 1)(2p2 − 1).

Find the sides of the triangles if p = 2 and if p = 3.

• 5357: Proposed by Neculai Stanciu, “George Emil Palade” School, Buzău, Romania and
Titu Zvonaru, Comănesti, Romania

Determine all triangles whose side-lengths are positive integers (of which at least one is
a prime number), whose semiperimeter is a positive integer, and whose area is equal to
its perimeter.

• 5358: Proposed by Arkady Alt, San Jose, CA

Prove the identity

m∑
k=1

k

(
m+ 1

k + 1

)
rk+1 = (r + 1)m(mr − 1) + 1.

5359: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain.

Let a, b, c be positive real numbers. Prove that

4
√

15a3b+ 1 +
4
√

15b3c+ 1 +
4
√

15c3a+ 1 ≤ 63

32
(a+ b+ c) +

1

32

(
1

a3
+

1

b3
+

1

c3

)
.
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• 5360: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let n ≥ 1 be an integer and let

In =

∫ ∞
0

arctanx

(1 + x2)n
dx.

Prove that

(a)
∞∑
n=1

In
n

= ζ(2);

(b)

∫ ∞
0

arctanx ln

(
1 +

1

x2

)
dx = ζ(2).

Solutions

• 5337: Proposed by Kenneth Korbin, New York, NY

Given convex quadrilateral ABCD with sides,

AB = 1 + 3
√

2
BC = 6 + 4

√
2 and

CD = −14 + 12
√

2.

Find side AD so that the area of the quadrilateral is maximum.

Solution 1 by Bruno Salgueiro Fanego, Viveiro, Spain

In the published solution to part (b) of problem 787 Journal Crux Mathematicorum,
1984, 10(2), 56− 58, it is proved that given three sides AB,BC, and CD, the area of the
quadrilateral ABCD is maximum if, and only if, the length of the fourth side, AD is the
diameter of the circle passing through B and C, and a root of the polynomial

x3 −
(
AB

2
+BC

2
+ CD

2
)
− 2AB ·BC · CD = 0. That is

x3 −
(

571− 282
√

2
)
x− 206− 104

√
2 = 0,

whose only real positive root is x = 7 + 5
√

2; so AD = 7 + 5
√

2.

Solution 2 by Albert Stadler, Herrliberg, Switzerland

The cyclic quadrilateral has the maximal area among all quadrilaterals having the same
sequence of side lengths. This is a corollary to Bretschneider’s formula
(http://en.wikipedia.org/wiki/Bretschneider%27s−formula). It can also be proved using
calculus (see([1]). The area of a cyclic quadrilateral with side a, b, c, d is given by
Brahmagupta’s formula

A =
√

(s− a)(s− b)(s− c)(s− d) where s = (a + b + c + d)/2.
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So if a = 1 + 3
√

2, b = 6 + 4
√

2, and c = −14 + 12
√

2 then

16A2 =
(
d− 9 + 13

√
2
)(

d− 19 + 11
√

2
)(

d+ 21− 5
√

2
)(
−d− 7 + 19

√
2
)
.

This is a polynomial of degree four whose extremal points are located at the zeros of its
derivative. Brute force shows that the extremal points are

d1 = 7 + 5
√

2 > 0,

d2 =
−7− 5

√
2 +

√
1987− 1338

√
2

2
< 0,

d3 =
−7− 5

√
2−

√
1987− 1338

√
2

2
< 0.

So AD = d1 = 7 + 5
√

2

References: (1) Thomas, Peter, “Maximizing the Area of a Quadrilateral,” The College
Mathematics Journal, Vol 34. No 4 (September 2003), pp. 315-316.

Solution 3 by Kee-Wai Lau, Hong Kong, China

We show that the area of the quadrilateral is maximum when AD = 7 + 5
√

2.

Let AD = x, s be the semiperimeter and ∆ the area of the quadrilateral. Since the
length of any side of a quadrilateral must be less than the sum of the lengths of the
other three sides, we have 19− 112

√
2 < x < −7 + 19

√
2. It is well known that

∆ ≤
√(

s−AB
) (
s−BC

) (
s−AB

) (
s−AD

)
,

so that 16∆2 ≤ f(x), where

f(x) = −x4 + 2
(

571− 282
√

2
)
x2 + 32(27 + 13

√
2)x− 454337 + 314940

√
2.

It can be checked readily by differentiation that for 19− 11
√

2 < x < −7 + 19
√

2, f(x)
attains its unique maximum at x = 7 + 5

√
2. Hence

∆ ≤

√
f(7 + 5

√
2)

4
= 14

√
−137 + 106

√
2.

It can also be checked readily that the area of the quadrilateral with sides
AB = 1 + 3

√
2, BC = 6 + 4

√
2, CD = −14 + 12

√
2, AD = 7 + 5

√
2,

AC =

√
7
(
−55 + 58

√
2
)

in fact equals 14

√
−137 + 106

√
2.

This completes the solution.

Also solved by Arkardy Alt, San Jose, CA; Ed Gray, Highland Beach, FL;
Henry Ricardo, New York Math Circle, NY; David Stone and John
Hawkins, Georgia Southern University, Statesboro, GA, and the proposer.
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• 5338: Proposed by Arkady Alt, San Jose, CA

Determine the maximum value of

F (x, y, z) = min

{
|y − z|
|x|

,
|z − x|
|y|

,
|x− y|
|z|

}
,

where x, y, z are arbitrary nonzero real numbers.

Solution 1 by Kee-Wai Lau, Hong Kong, China

We show that the maximum value of F (x, y, z) is 1.

We first prove that
F (x, y, z) ≤ 1, (1)

by showing that at least one of the numbers
|y − z|
|x|

,
|z − x|
|y|

,
|x− y|
|z|

is less than equal to

1.

Suppose, on the contrary, that all of them are greater than 1. From
|y − z|
|x|

> 1, we

obtain (
y − z)2 > x2, or (x + y − z )(x − y + z ) < 0. (2)

Similarly from
|z − x|
|y|

> 1, and
|x− y|
|x|

> 1, we obtain respectively

(x− y − z)(x+ y − z) > 0, (3)

and
(x− y − z)(x− y + z) > 0. (4)

Multiplying (2), (3) and (4) together. we obtain

(x+ y − z)2 (x− y + z)2 (x− y − z)2 < 0,

which is false. Thus (1) holds. Since F (2,−1, 1) = 1, we see that the maximum value of
F (x, y, z) is 1 indeed.

Solution 2 by Albert Stadler, Herrliberg, Switzerland

We claim that the maximum value equals 1.

Let x > 0. Then F (x, x+ 1,−1) = min

{
x+ 2

x
,
x+ 1

x+ 1
,
1

1

}
= 1.

So the maximum value is ≥ 1.

Suppose the maximum value is > 1. Then there is a triple (x, y, z) with

|y − z| > |x|, |z − x| > |y|, |x− y| > |z|. (1)

By cyclic symmetry, we can assume that x ≤ min(y, z).

Assume first that x ≤ y ≤ z. Then (1) reads as

z − y > |x|, z − x > |y|, y − x > |z|. So z − x = (z − y) + (y − x) > |x|+ |z| ≥ z − x
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which is a contradiction.

Assume next that x ≤ z ≤ y. Then (1) reads as

y − z > |x|, z − x > |y|, y − x > |z|. So y − x = (y − z) + (z − x) > |x|+ |y| ≥ y − x,

which is a contradiction.

This concludes the proof.

Solution 3 by Paolo Perfetti, Department of Mathematics, “Tor Vergata”
Unversity, Rome Italy

Answer: 1

The symmetry of F (x, y, z) allows us to set z ≤ y ≤ x. We have two cases:

1) 0 < z ≤ y ≤ x and
2) z < 0, 0 < y ≤ x.

Moreover, by observing that F (x, y, z) = F (−x,−y,−z), the case z ≤ y < 0, x > 0
is recovered by the case 2) simply changing sign to all the signs and the same happens
if z ≤ y ≤ x < 0.

Now we study the case 1)

|y − z|
|x|

≤ |x− z|
|y|

⇐⇒ y − z
x
≤ x− z

y
⇐⇒ z ≤ x+ y

which evidently holds true. Moreover,

|y − z|
|x|

≤ |x− y|
|z|

⇐⇒ y − z
x
≤ x− y

z
⇐⇒ yx+ yz ≤ x2 + z2

This generates two subcases.

1.1) 0 < z ≤ y ≤ x and yx+ yz ≤ x2 + z2. In this case we must find the maximum of the

function
y − z
x

. We have

y − z
x
≤ y − z

y
= 1− z

y
< 1.

The value 1 is not attained because z 6= 0.

1.2) 0 < z ≤ y ≤ x and yx+ yz > x2 + z2. In this case we must find the maximum of the

function
x− y
z

. We have

x− y
z

<
y − z
x
≤ y − z

y
= 1− z

y
< 1.

Now we study case 2)

F (x, y, z) = min

{
y − z
x

,
x− z
y

,
x− y
−z

}
and
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y − z
x
≤ x− z

y
⇐⇒ z ≤ x+ y

which evidently holds true.
Moreover,

y − z
x
≤ z − y
−z

⇐⇒ y ≤ x+ z.

This generates two subcases.

2.1) z < 0, 0 < y < x, y ≤ x+ z. In this case we must find the maximum of

y − z
x
≤ x

x
= 1.

The maximum achieved.

2.2) z < 0, 0 < y < x, y > x+ z. In this case we must find the maximum of

x− y
−z

≤ x− y
x− y

= 1.

The maximum achieved.

Also solved by Jerry Chu, (student at Saint George’s School), Spokane, WA;
Ethan Gegner, (student, Taylor University), Upland, IN, and the proposer.

• 5339: Proposed by D.M. Bătinetu-Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu “George Emil Palade” School, Buzău,
Romania

Calculate:

∫ π/2

0

3 sinx+ 4 cosx

3 cosx+ 4 sinx
dx.

Solution 1 by Haroun Meghaichi (student, University of Science and
Technology Houari Boumediene), Algeria

Consider the general case for a, b > 0 :

I(a, b) =

∫ π/2

0

a sinx+ b cosx

b sinx+ a cosx
dx,

Note that the derivative of the denominator (with respect to x) is b cosx− a sinx, and
{b sinx+ a cosx, b cosx− a sinx} form a base on R[cosx, sinx], then there are α, β ∈ R
such that

a sinx+ b cosx = α (b sinx+ a cosx) + β (b cosx− a sinx) , ∀ x ∈ R

⇔ b− aα− bβ = a− bα+ aβ = 0.

We can easily solve the system to get (α, β) =

(
2ab

a2 + b2
,
b2 − a2

a2 + b2

)
, then

I(a, b) =
1

a2 + b2

∫ π/2

0
2ab+ (b2 − a2)b cosx− a sinx

b sinx+ a cosx
dx
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=
1

a2 + b2

[
2abx+ (b2 − a2) ln |a cosx+ b sinx|

]π/2
0

=
1

a2 + b2

(
abπ + (b2 − a2) ln

b

a

)
.

The proposed integral equals I(4, 3) = I(3, 4) =
1

25

(
12π + 7 ln

4

3

)
.

Solution 2 by Dionne Bailey, Elsie Campbell, Charles Diminnie, and Andrew
Siefker, Angelo State University, San Angelo, TX

We attack the problem by using the classical technique for converting a rational
function of sinx and cosx into an ordinary rational function. If we set

u = tan
(x

2

)
,

then the “half-angle” formulas imply that

u2 =
sin2

(
x
2

)
cos2

(
x
2

) =
1− cosx

1 + cosx

and hence,

cosx =
1− u2

1 + u2
. (1)

Also, using (1) and the known identity

u = tan
(x

2

)
=

sinx

1 + cosx
,

we get

sinx =
2u

1 + u2
. (2)

Finally,

du = sec2
(x

2

)
· 1

2
dx =

1

2

[
1 + tan2

(x
2

)]
dx =

1 + u2

2
dx,

i. e.,

dx =
2

1 + u2
du. (3)

Since u = 0 when x = 0 and u = 1 when x =
π

2
, (1), (2), and (3) yield (upon

simplification) ∫ π
2

0

3 sinx+ 4 cosx

3 cosx+ 4 sinx
dx = 4

∫ 1

0

2u2 − 3u− 2

(3u2 − 8u− 3) (1 + u2)
du

= 4

∫ 1

0

2u2 − 3u− 2

(3u+ 1) (u− 3) (1 + u2)
du. (4)
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Then, (4) and the partial fraction expansion

2u2 − 3u− 2

(3u+ 1) (u− 3) (1 + u2)
=

12

25
· 1

1 + u2
− 7

50
· u

1 + u2
+

21

100
· 1

3u+ 1

+
7

100
· 1

u− 3

imply that∫ π
2

0

3 sinx+ 4 cosx

3 cosx+ 4 sinx
dx = 4

∫ 1

0

2u2 − 3u− 2

(3u+ 1) (u− 3) (1 + u2)
du

=
48

25
tan−1 u

]1
0

− 7

25
ln
(
1 + u2

)]1
0

+
7

25
ln |3u+ 1|

]1
0

+
7

25
ln |u− 3|

]1
0

=
12π

25
− 7

25
ln 2 +

7

25
ln 4 +

7

25
ln 2− 7

25
ln 3

=
12π

25
+

7

25
ln

(
4

3

)

Solution 3 by Ethan Gegner, (student, Taylor University), Upland, IN

The value of the integral is
1

25
(12π + 7 log(4/3)).

Define

I =

∫ π/2

0

3 sinx+ 4 cosx

3 cosx+ 4 sinx
dx

A =

∫ π/2

0

sinx

3 cosx+ 4 sinx
dx

B =

∫ π/2

0

cosx

3 cosx+ 4 sinx
dx.

Then

I = 3A+ 4B
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I +A−B =

∫ π/2

0

3 cosx+ 4 sinx

3 cosx+ 4 sinx
dx =

π

2

I − 6A =

∫ π/2

0

−3 sinx+ 4 cosx

3 cosx+ 4 sinx
dx =

∫ 4

3

1

u
du = log(4/3)

Solving this system yields I =
1

25
(12π + 7 log(4/3)) .

Solution 4 by Bruno Salgueiro Fanego, Viveiro, Spain

Since
d

dx
(ax+ b ln(2 cosx+ 4 sinx)) =

(4a− 3b) sinx+ (3a+ 4b) cosx

3 cosx+ 4 sinx
when

3 cosx+ 4 sinx > 0 and b ∈ <, if we take a, b,∈ < such that 4a− 3b = 3 and 3a+ 4b = 4,

that is, a =
24

25
and b =

7

25
, we obtain that

1

25
(24x+ 7 ln(3 cosx+ 4 sinx)) is a primitive

of
3 sinx+ 4 cosx

3 cosx+ 4 sinx
in [0, π/2], so, by Barrow’s rule,

∫ π/2

0

3 sinx+ 4 cosx

3 cosx+ 4 sinx
dx =

1

25
(24x+ 7 ln(3 + 4())

∣∣∣∣π/2
0

=
1

25
(12x+ 7 ln(3 · 0 + 4 · 1))− 1

25
(24 · 0 + 7 ln(31 + 4 · 0)

=
12π

25
+

7

25
ln

(
4

3

)
.

Solution 5 by Brian D. Beasely, Presbyterian College, Clinton, SC

We let f(x) = 3 sinx+ 4 cosx and g(x) = 3 cosx+ 4 sinx. Since
g′(x) = −3 sinx+ 4 cosx, we seek constants A and B such that

f(x)

g(x)
= A

(
g′(x)

g(x)

)
+B.

This produces A = 7/25 and B = 24/25, so∫ π/2

0

f(x)

g(x)
dx =

∫ π/2

0

[
A

(
g′(x)

g(x)

)
+B

]
dx

= A ln(g(x)) +Bx]
π/2
0

= A ln

(
4

3

)
+B

(π
2

)
=

7

25
ln

(
4

3

)
+

12π

25
.
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Addendum. We may generalize the above technique to show that∫ π/2

0

m sinx+ n cosx

3 cosx+ 4 sinx
dx = A ln

(
4

3

)
+B

(π
2

)
,

where A = (−3m+ 4n)/25 and B = (4m+ 3n)/25.

We may further generalize to show that∫ π/2

0

m sinx+ n cosx

p cosx+ q sinx
dx = A ln

∣∣∣∣qp
∣∣∣∣+B

(π
2

)
,

where A = (−pm+ qn)/(p2 + q2) and B = (qm+ pn)/(p2 + q2), provided we place
appropriate restrictions on the values of p and q (to keep p cosx+ q sinx 6= 0 for each x
in [0, π/2], to avoid p = 0 or q = 0, etc.).

Also solved by Arkady Alt, San Jose, CA; Andrea Fanchini, Gantú, Italy;
Paul M. Harms, North Newton, KS; Ed Gray, Highland Beach, FL; G.C.
Greubel, Newport News, VA; Kee-Wai Lau, - Hong Kong, China; Daniel
López, Center for Mathematical Sciences, UNAM, Morelia, Mexico; Paolo
Perfetti, Department of Mathematics, “Tor Vergata” University, Rome,
Italy; Henry Ricardo (two solutions), New York Math Circle, NY; Albert
Stadler, Herrliberg, Switzerland; Vu Tran (student, Purdue University),West
Lafayette, IN; Nicusor Zlota, “Traian Vuia” Technical College, Focsani,
Romania; Titu Zvonaru, Comănesti, Romania, and the proposers.

• 5340: Proposed by Oleh Faynshteyn, Leipzig, Germany

Let a, b and c be the side-lengths, and s the semi-perimeter of a triangle. Show that

a2 + b2

(s− c)2
+

b2 + c2

(s− a)2
+
c2 + a2

(s− b)2
≥ 24.

Solution 1 by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain

Changing variables by letting s− a = x, s− b = y and s− c = z the proposed inequality
is equivalent to the following one, for x, y and z positive real numbers:∑

cyclic

(
1 +

y

z

)2
+
(

1 +
x

z

)2
≥ 24.

The last inequality follows by the power-mean, arithmetic-mean, geometric-mean
inequality: √√√√√∑

cyclic

(
1 +

y

z

)2
+
(

1 +
x

z

)2
6

≥

∑
cyclic

(
1 +

y

z

)
+
(

1 +
x

z

)
6

= 1 +

∑
cyclic

(y
z

+
x

z

)
6

≥ 1 + 6

√∏
cyclic

y

z
· x
z

= 2
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from where the result follows, with equality if and only if x = y = z, that is if a = b = c.

Solution 2 by Nikos Kalapodis, Patras, Greece

a+ b+ c = 2s =⇒ a2 = (s− b+ s− c)2.
Using the well-known inequality (x+ u)2 ≥ 4xy for x = s− b and y = s− c we have

(s− b+ s− c)2 ≥ 4(s− b)(s− c), i.e.,

a2 ≥ 4(s − b)(s − c) (1)

Similarly we obtain,

b2 ≥ 4(s− c)(s− a) (2)

c2 ≥ 4(s− a)(s− b). (3)

Applying the well known inequality x2 + y2 ≥ 2xy, to (1), (2), and (3) we have

a2 + b2

(s− c)2
+

b2 + c2

(s− a)2
+
c2 + a2

(s− b)2
=

[(
a

s− b

)2

+

(
a

s− c

)2
]

+

[(
b

s− c

)2

+

(
b

s− a

)2
]

+

[(
c

(s− a)

2
+

(
c

(s− b)2

)]
≥

2a2

(s− b)(s− c)
+

2b2

(s− c)(s− a)
+

2c2

(s− a)(s− b)
≥ 2(4 + 4 + 4) = 24.

Solution 3 by Arkady Alt, San Jose, CA

Note that
∑
cyc

a2 + b2

(s− c)2
≥ 24 ⇐⇒

∑
cyc

a2 + b2

(a+ b− c)2
≥ 6.

Since a2 ≥ a2 − (b− c)2 ⇐⇒ a2

a+ b− c
≥ c+ a− b

and

b2 ≥ b2 − (c− a)2 ⇐⇒ b2

a+ b− c
≥ b+ c− a

then by AM-GM Inequality we have∑
cyc

a2

(a+ b− c)2
≥
∑
cyc

c+ a− b
a+ b− c

≥ 3 3

√
c+ a− b
a+ b− c

· a+ b− c
b+ c− a

· b+ c− a
c+ a− b

= 3

and∑
cyc

b2

(a+ b− c)2
≥
∑
cyc

b+ c− a
a+ b− c

≥ 3 3

√
b+ c− a
a+ b− c

· c+ a− b
b+ c− a

· a+ b− c
c+ a− b

= 3.

Thus,
∑
cyc

a2 + b2

(a+ b− c)2
≥ 6.
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Solution 4 by D.M. Bătinetu-Giurgiu, Bucharest, Romania

We shall prove that

xam + ybm

(s− c)m
+
xbm + ycm

(s− a)m
+
xcm + yam

(s− b)m
≥ 3
√
xy · 2m+1, where m, x , y > 0.

Proof: We denote the area of the triangle by F , its circumradius by R and its inradius
by r.

By the AM-GM inequality and taking into account that
F = sr =

√
s(s− a)(s− b)(s− c) we have that

∑
cyclic

xam + ybm

(s− c)m
≥ 2
√
xy
∑
cyclic

(√
ab
)m

(s− c)m
≥ 2

√
xy · 3 · 3

√√√√√∏
cyclic

(√
ab
)m

(s− c)m

= 6
√
xy · 3

√(
abc

(s− a)(s− b)(s− c)

)m

= 6
√
xy · 3

√
(4RF )msm

(s(s− a)(s− b)(s− c))m

= 6
√
xy · 3

√
4mRmFmsm

F 2m

= 6
√
xy · 3

√
4mRmsm

Fm

= 6
√
xy · 3

√
4mRmsm

smrm

= 6
√
xy · 3

√
4m
(
R

r

)m

≥ Euler(R≥2r)6
√
xy · 3
√

4m2m

= 6
√
xy · 3
√

23m = 6
√
xy · 3
√

23m = 3
√
xy2m+1

If we take m = 2 we obtain a solution to problem 5340.

Solution 5 by Paul M. Harms, North Newton, KS
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If x > 0, then using calculus we can show that the minimum value of both expressions
x+

1

x

x2 +
1

x2

is 2 and occurs at x = 1. I will use several substitutions to get the left side of the
problem inequality into a form easier to use.

First let t > 0 and r > 0 such that a = rc and b = tc. Then s =
c

2
(r + t+ 1) and the left

side of the problem inequality is(
r2 + t2

)(
t+ r − 1

2

)2 +

(
t2 + 1

)(
t− r + 1

2

)2 +

(
r2 + 1

)(
r − t+ 1

2

)2 .

Now let


2H = r + t− 1,

2L = t− r + 1

2K = r − t+ 1.

Then


r = H +K

t = H + L

L = 1−K
with H,L and K positive since

s− a, s− b and s− c are positive.

The inequality in terms of the positive numbers H,K and L can be written as

(H +K)2 + (H + L)2

H2
+

(H + L)2 + 1

L2
+

(H +K)2 + 1

K2
≥ 24.

Working with the left side of the inequality we can obtain(
2 + 2

K

H
+

(
K

H

)2

+ 2
L

H
+

(
L

H

)2
)

+

((
H

L

)2

+ 2
L

H
+ 1 +

1

L2

)
+

((
H

K

)2

+ 2
H

K
+ 1 +

1

K2

)

= 2

(
K

H
+
H

K

)
+ 2

(
L

H
+
H

L

)
+ 2

((
H

K

)2

+

(
K

H

)2
)

+

((
L

H

)2

+

(
H

L

)2
)

+ 4 +
1

K2
+

1

L2
.

Each of the brackets in the last expression has the form

(
x+

1

x

)
or

(
x2 +

1

x2

)
so the

minimum value of each bracket is 2. Then the left side of the original problem inequality

is greater than or equal to 2(2) + 2(2) + 2 + 2 + 4 +
1

K2
+

1

L2
. If we can show that this

expression is greater than or equal 24, the original inequality is correct.

We must show that
1

K2
+

1

L2
is at least 8. Since K and L are positive numbers such

that L = 1−K, the derivative of the two terms is
−2

K3
− 2

L3
(−1). Letting the derivative

equal to zero, we obtain K = L =
1

2
. The value of 8 is clearly a minimium for

1

K2
+

1

L2
.

Thus the problem inequality is correct.

Solution 6 by Henry Ricardo, New York Math Circle, NY
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It is a known consequence of the arithmetic-geometric mean inequality that the
side-lengths of a triangle satisfy the inequality

(b+ c− a)(c+ a− b)(a+ b− c) ≤ abc.

Using this fact and the arithmetic-geometric mean inequality twice more, we have

a2 + b2

(s− c)2
+

b2 + c2

(s− a)2
+
c2 + a2

(s− b)2
≥ 3

(
(a2 + b2)(b2 + c2)(c2 + a2)

(s− a)2(s− b)2(s− c)2

)1/3

≥ 3

(
(2ab)(2bc)(2ac)

[(b+ c− a)(a+ c− b)(a+ b− c)]2/64

)1/3

≥ 3

(
8a2b2c2

(abc)2/64

)1/3

= 24.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX; D. M.Btinetu-Giurgiu, Bucharest,
Romania; Bruno Salgueiro Fanego, Viveiro, Spain; Ethan Gegner (student,
Taylor University), Upland, IN; Ed Gray, Highland Beach, FL; Nikos
Kalapodis (two additional solutions to #2 above), Patras, Greece; Kee-Wai
Lau, Hong Kong, China; Haroun Meghaichi (student, University of Science
and Technology Houari Boumediene), Algeria; Albert Stadler, Herrliberg,
Switzerland; Nicusor Zlota, “Traian Vuia” Technical College, Focsani,
Romania; Titu Zvonaru and Neculai Stanciu, Romania, and the proposer.

• 5341: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let z1, z2, · · · , zn, and w1, w2, · · · , wn be sequences of complex numbers. Prove that

Re

(
n∑
k=1

zkwk

)
≤ 3

(n+ 1)(n+ 2)

n∑
k=1

|zk|2 +
3n2 + 6n+ 1

20

n∑
k=1

|wk|2 .

Solution 1 by Kee-Wai Lau, Hong Kong, China

We have

Re

(
n∑
k=1

zkwk

)
≤

∣∣∣∣∣
n∑
k=1

zkwk

∣∣∣∣∣ ≤
n∑
k=1

|zk| |wk|

=

n∑
k=1

∣∣∣∣∣
√

6zk√
(n+ 1)(n+ 2)

∣∣∣∣∣
∣∣∣∣∣
√

(n+ 1)(n+ 2)wk√
6

∣∣∣∣∣
≤ 1

2

 n∑
k=1

∣∣∣∣∣
√

6zk√
(n+ 1)(n+ 2)

∣∣∣∣∣
2

+

∣∣∣∣∣
√

(n+ 1)(n+ 2)wk√
6

∣∣∣∣∣
2


=
3

(n+ 1)(n+ 2)

n∑
k=1

|zk|2 +
(n+ 1)(n+ 2)

12

n∑
k=1

|wk|2 .
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Since
(n+ 1)(n+ 2)

12
=

3n2 + 6n+ 1

20
− (n− 1)(4n+ 7)

60
≤ 3n2 + 6n+ 1

20
,

so the inequality of the problem holds.

Solution 2 by Ethan Gegner (student, Taylor University), Upland, IN

For n ∈ N , define

f(n) =

(
3

(n+ 1)(n+ 2)

)(
3n2 + 6n+ 1

20

)
and observe that f is an increasing function of n; thus, f(n) ≥ f(1) = 1/4 for all n ∈ N .

Applying AM-GM inequality and then Cauchy’s inequality, we obtain

3

(n+ 1)(n+ 2)

n∑
k=1

|zk|2 +
3n2 + 6n+ 1

20

n∑
k=1

|wk|2 ≥ 2

√√√√f(n)

(
n∑
k=1

|zk|2
)(

n∑
k=1

|wk|

)2

≥

(
n∑
k=1

|zk|2
)1/2( n∑

k=1

|wk|2
)1/2

≥
n∑
k=1

|zk| |wk|

≥ Re

(
n∑
k=1

zkwk

)
.

Solution 3 by Paolo Perfetti, Department of Mathematics, “Tor Vergata”
University, Rome, Italy

The AGM yields

3

(n+ 1)(n+ 2)

n∑
k=1

|zx|2+
3n2 + 6n+ 1

20

n∑
k=1

|wx|2 ≥ 2

√
3

20

3n2 + 6n+ 1

n2 + 3n+ 2

√√√√ n∑
k=1

|zx|2. ·
n∑
r=1

|wr|2.

Then we use Cauchy–Schwarz√√√√ n∑
k=1

|zx|2 ·
n∑
r=1

|wr|2 ≥
n∑
k=1

|zx| · |wk|

Moreover

15



Re

(
n∑
k=1

zkwk

)
≤

∣∣∣∣∣
n∑
k=1

zkwk

∣∣∣∣∣ ≤
n∑
k=1

|zkwk| ,

and the inequality amounts to show that

2

√
3

20

3n2 + 6n+ 1

n2 + 3n+ 2
≥ 1 ⇐⇒ n ≤ −7

4
, n ≥ 1.

This completes the proof.

Solution 4 by Nicusor Zlota, “Traian Vuia” Technical College, Focsani,
Romania

Let zk = xk + iyk and wk = ak + ibk, for 0 ≤ k ≤ n. We can assume that
xk, yk, ak, bk ≥ 0, because we can increase the left hand side of the statement of the
problem by using absolute values.

We wish to prove the inequality:

n∑
k=1

(akxk − bkyk) ≤
3

(n+ 1)(n+ 2)

n∑
k=1

(
x2k + y2k

)
+

3n2 + 6n+ 1

20

n∑
k=1

(
a2k + b2k

)
.

Because of symmetry, we need only show that:

akxk ≤
3

(n+ 1)(n+ 2)
x2k +

3n2 + 6n+ 1

20
a2k.

Considering this as a quadratic inequality for the variable xk, we see that the
discriminant is negative.

∆ = a2k − 4
3

(n+ 1)(n+ 2)

3n2 + 6n+ 1

20
a2k = a2k

(
−4n2 + 3n+ 7

5(n+ 1)(n+ 2)

)
< 0.

Hence, the problem is solved.

Also solved by Bruno Salgueiro Fanego,Viveiro, Spain; Ed Gray, Highland
Beach, FL, and the proposer.

• 5342: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let a, b, c, α > 0, be real numbers. Study the convergence of the integral

I(a, b, c, α) =

∫ ∞
1

(
a1/x − b1/x + c1/x

2

)α
dx.

The problem is about studying the conditions which the four parameters, a, b, c, and α,
should verify such that the improper integral would converge.

Solution 1 by Arkady Alt, San Jose, CA
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Case 1. If a = b = c, then for any nonzero x, a
1
x − b

1
x + c

1
x

2
= 0, so I(a, b, c, α) = 0 for

any real α > 0.

Case 2. Suppose α isn’t an integer. Then a
1
x − b

1
x + c

1
x

2
must be nonnegative for any x

and in particular, it must be positive for x = 1, that is a ≥ b+ c

2
.

Since

{
2a = b+ c

b = c
⇐⇒ a = b = c then, to avoid the trivial case 1, we will consider

a, b, c such that

a >
b+ c

2
or

{
2a = b+ c

b 6= c.

Then, by the AM-PM inequality, for x > 1 we have

b+ c

2
>

(
b

1
x + c

1
x

2

)x
⇐⇒

(
b+ c

2

) 1
x

>
b

1
x + c

1
x

2
,

and we obtain a
1
x >

b
1
x + c

1
x

2
for any x > 1 and that the integral is defined.

For any real p > 0 we have lim
t→0

pt − 1

t
= ln p. So, lim

x→∞
x

(
a

1
x − b

1
x + c

1
x

2

)
=

lim
x→∞

x
(
a

1
x − 1

)
−1

2

(
lim
x→∞

x
(
b

1
x − 1

)
+ lim
x→∞

x
(
c

1
x − 1

))
= ln a− ln b+ ln c

2
= ln

a√
bc
> 0,

because a >
√
bc if b 6= c or if a >

b+ c

2
.

Therefore, lim
x→∞

(
a

1
x − b

1
x + c

1
x

2

)α
1

xα

= lnα
a√
bc
> 0, and by the Limit Comparison Test,

I(a, b, c, α) converges iff
1

xα
converges; that is, I(a, b, c, α) converges if α > 1 and diverges

if α ∈ (0, 1].

Case 3. Let α be a positive integer. Then the expression

(
a

1
x − b

1
x + c

1
x

2

)α
is defined

for any positive a, b, c and since

lim
x→∞

(
a

1
x − b

1
x + c

1
x

2

)α
= lnα

a√
bc
> 0

is the limit of I(a, b, c, α) for a >
√
bc and when α > 1. So the situation of a =

√
bc must

be analyzed.
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Then

a 1
x − b

1
x + c

1
x

2

α

=

(−1)α
(
b

1
2x − c

1
2x

)2α

2α
.

Assume, without loss of generality, b > c. Since lim
x→∞

x

(
b

1
2x − a

1
2x

)
=

1

2
ln
b

c
> 0,

then lim
x→∞

(
b
1
2x−a

1
2x

)2α

1

x2α

=

(
1

2
ln
b

c

)2α

> 0, and by the Limit Comparison Test

I(a, b, c, α) is convergent iff
1

x2α
convergent, that is I(a, b, c, α) convergent if

α > 1/2 and divergent if α ∈ (0, 1/2].

In summary,

• If a = b = c then I(a, b, c, α) = 0 is convergent for any real α;

• If α ∈ <+/N and a >
b+ c

2
or

{
2a = b+ c
b 6= c

then I(a, b, c, α) is convergent

for α > 1 and divergent for α ∈ (0, 1];

• If α ∈ <+/N and a >
√
bc then I(a, b, c, α) is convergent for α > 1 and divergent for

α ∈ (0, 1];

• If α ∈ N and a =
√
bc then I(a, b, c, α) is convergent for α > 1/2 and divergent for

α ∈ (0, 1/2].

Solution 2 by Paolo Perfetti, Department of Mathematics, “Tor Vergata”
University, Rome, Italy

To have the integral well defined, a necessary condition is 2a ≥ b+ c.

The convergence occurs in one of the following cases:
1) if a = b = c we have convergence for any value of α

2) if α > 1 we have convergence regardless the values of a, b, c

3) if 1/2 < α ≤ 1 and a =
√
bc we have convergence.

Proof
If α is irrational or it is a rational p/q reduced to the lowest terms with q even, we must
impose

2a1/x − b1/x − c1/x ≥ 0

but this doesn’t seem to me easy to prove. A necessary condition is 2a ≥ b+ c
corresponding to x = 1.

If a = b = c the integrand is identically zero and then the integral converges regardless
the value of α.

From now on, a 6= b or b 6= c or a 6= c.

We have a1/x = e
ln a
x = 1 +

ln a

x
+

ln2 a

2x2
+

ln3 a

6x3
+O(x−4) whence
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[
a1/x − b1/x + c1/x

2

]α
=

{
1 +

ln a

x
+

ln2 a

2x2
+

ln3 a

6x3
+

−1

2

(
1 +

ln b

x
+

ln2 b

2x2
+

ln3 b

6x3
+ 1 +

ln c

x
+

ln2 c

2x2
+

ln3 c

6x3
+O(x−4)

)}α
=

=
1

xα

(
ln

a√
bc

+
ln2 a− ln2 b

2 −
ln2 c
2

2x
+ xA

)α

A =
1

6

(
ln3 a

x3
− ln3 b

2x3
− ln3 c

2x3

)
+O(x−4)

The positivity of ln
a√
bc

+
ln2 a− ln2 b

2 −
ln2 c
2

2x
+ xA for x large enough, imposes

ln
a√
bc
> 0 that is a2 ≥ bc which in turn follows by 2a ≥ b+ c. Indeed

a2 ≥ (b+ c)2

4
=
b2 + c2 + 2bc

4
≥ 4bc

4
= bc

Let α > 1. Since for any x large enough it is

(
ln

a√
bc

+
ln2 a− ln2 b

2 −
ln2 c
2

2x
+ xA

)α
≤ C

if α > 1 the integral

∫ ∞
1

1

xα

(
ln

a√
bc

+
ln2 a− ln2 b

2 −
ln2 c
2

2x
+ xA

)α
dx converges.

Let 1/2 < α ≤ 1 and a =
√
bc.

0 ≤

(
a1/x − b1/x + c1/x

2

)α
=

1

x2α

(1

4
(ln b− ln c)2 + x2A

)α
≤ C1

x2α

whence convergence.

Let 0 < α ≤ 1/2, and a =
√
bc. To have convergence we need ln b = ln c that is b = c, but

this would yield a = b = c, a forbidden condition.

Also solved by the proposer.
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