
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
January 15, 2015

• 5319: Proposed by Kenneth Korbin, New York, NY

Let N be an odd integer greater than one. Then there will be a Primitive Pythagorean
Triangle with perimeter equal to

(
N2 +N

)2
. For example, if N = 3, then the perimeter

equals
(
32 + 3

)2
= 144.

Find the sides of the PPT for perimeter
(
152 + 15

)2
and for perimeter

(
992 + 99

)2
.

• 5320: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

It is fairly well known that if (a, b, c) is a Primitive Pythagorean Triple (PPT), then the
product abc is divisible by 60. Find infinitely many PPT’s (a, b, c) such that the sum
(a+ b+ c) is also divisible by 60.

• 5321: Proposed by Lawrence M. Lesser, University of Texas at El Paso, TX

On pop quizzes during the fall semester, Al gets 1 out of 3 questions correct, while Bob
gets 3 of 8 correct. During the spring semester, Al gets 3/5 questions correct, while Bob
gets 2/3 correct. So Bob did better each semester (3/8 > 1/3 and 2/3 > 3/5) but worse
for the overall academic year (5/11 < 4/8). The total number of questions involved in
the above example was 3 + 8 + 5 + 3 = 19, and the author conjectures (in his chapter in
the 2001 Yearbook of the National Council of Teachers of Mathematics) that this is
smallest dataset with nonzero numerators in which this reversal (Simpson’s Paradox)
happens. If we allow zeros, the smallest dataset is conjectured to be nine: 0/1 < 1/4
and 2/3 < 1/1, but 2/4 > 2/5 .

Prove these conjectures or find counterexamples.

• 5322: Proposed by D.M. Bătinetu-Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu “George Emil Palade” School, Buzău,
Romania
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If lim
n→∞

(
−3

2

3
√
n2 +

n∑
k=1

1
3
√
k

)
= a > 0, then compute lim

n→∞


−3

2

3
√
n2 +

n∑
k=1

1
3
√
k

a


3√n

.

• 5323: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let n be a positive integer and let a1, a2, . . . , an be positive real numbers greater than or
equal to one. Prove that(

1

n

n∑
k=1

ak

)−2
+

(
1

n2

n∏
k=1

a−2k

)(
n∑
k=1

(
a2k − 1

)1/2)2

≤ 1.

• 5324: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Calculate
∞∑
n=1

(
n ln

(
1 +

1

n

)
− 1 +

1

2n

)
.

Solutions

• 5301: Proposed by Kenneth Korbin, New York, NY

A convex cyclic quadrilateral with integer length sides is such that its area divided by
its perimeter equals 2014.

Find the maximum possible perimeter.

Solution 1 by Proposer

• The figure is an isosceles trapezoid. Let b1, b2 be the bases, h the height, l the
non-parallel sides, and let N = 2014.

• The bases are b1 = 2 and b2 = 8N2.

• Each leg is equal to the arithmetic mean of the bases,

l =
b1 + b2

2
= 4N2 + 1.

• The altitude h is equal to the geometric mean of the bases.

h =
√
b1b2 = 4N.

• The area equals,

1

2
h (b1 + b2) = hl =

(b1 + b2)(
√
b1b2

2
= 16N3 + 4N.
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• Perimeter = b1 + b2 + 2l = 4l = 16N2 + 4.

• Area

Perimeter
=

16N3 + 4N

16N2 + 4
= N.

• l2 − h2 = (l − 2)2, (sides of a PPP.)

Letting the sides be (a, b, c, d) and letting a = 2 and
√
ac = 4 · 2014 = 8056 gives

c = 32, 449, 568.

Letting b = d =
a+ c

2
= 16, 224, 785.

Then, Perimeter = 4b = 4d and
√
bd = b = d.

Area = K =
√
abcd =

√
ac
√
bd = 8056b

Area

Perimeter
=

8056b

4b
= 2014.

So, Perimeter= P = 64, 899, 140.

Solution 2 and Comments, jointly posted by Michael N. Fried of Kibbutz
Revivim, Israel and Edwin Gray, Highland Beach, FL

We can begin to approach this problem in an obvious way. Let the sides be a, b, c, d, the
area A, and the perimeter P . Let the quadrilateral be inscribed in a circle of radius r,
and let the sides subtend the angles at the center α, β, γ, δ (see figure). Then, we have:

A =
1

2
r2(sinα+ sinβ + sin γ + sin δ)

And,

P = 2r

(
sin

α

2
+ sin

β

2
+ sin

γ

2
+ sin

δ

2

)
So that,

A

P
=

1

4

sinα+ sinβ + sin γ + sin δ

sin α
2 + sin β

2 + sin γ
2 + sin δ

2

r

Or, in terms of P ,

A

P
=

1

8

sinα+ sinβ + sin γ + sin δ(
sin α

2 + sin β
2 + sin γ

2 + sin δ
2

)2P = σP
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where σ is a function of α, β, γ (since δ = 360− (α+ β + γ)).

It is easy to see that σ tends to 0 as α, β, γ, δ tend to 0. Consider a sequence of α, β, γ, δ
where α = β = γ and δ = 360− 3α. For this sequence, we have:

σ(α) =
1

8

3 sinα− sin 3α(
3 sin α

2 + sin 3α
2

)2
We can see clearly that (1) σ(α) is continuous in a right neighborhood of 0, and (2) if we
write the Taylor expansions of the numerator and denominator of σ(α) we observe that
the lowest power of α in the numerator is 3 while the lowest power is 2 in the
denominator, so that σ(α) is o(α).

Therefore, if P (α) is the perimeter of the cyclic quadrilateral corresponding to α, β, γ, δ

where α = β = γ and δ = 360− 3α then since
2014

σ(α)
= P (α), we find that P (α) increases

without bound as α tends to 0.

This does not solve the problem; however, it does show that if the problem has a
solution it depends entirely on the fact that the sides each have integer length (the
situation is analogous to the fact that if (x, y) is an integer point on the hyperbola
x2 − y2 = 81 then the sum x+ y has maximum, while if (x, y) is any point on the
hyperbola then the sum x+ y has no maximum).

Now, Ken Korbin has shown the existence of a cyclic quadrilateral with integer sides

and
A

P
= 2014, which he claims to be maximal. He maintains this is an isosceles

trapezoid (which it must be if it is to be cyclic) with one base equal to 2 and the other
8× 20142. He sets the remaining sides equal to the arithmetic mean of these values and
asserts that the height must then be the geometric mean of the bases.

From this, he shows easily enough that this quadrilateral with sides 2,
8× 20142 = 32, 449, 568, and 16,224,785 taken twice satisfies the condition that
A

P
= 2014. But of course this does not prove that the perimeter is maximal (even if it

is). I might also mention that the sides of the equilateral trapezoid can be permuted
without making the resulting quadrilateral non-cyclic or changing the perimeter and
area, being an equilateral trapezoid is not essential

Ed Gray, however, has explained clearly why the equal sides should be the arithmetic
mean of the other sides when we take the height to be the geometric mean and why, in
this special case, Ken’s solution is maximal. Ed writes as follows:

I have looked at Ken’s solution to the problem, and while the answer may be correct, I
don’t see any proof that the answer is a maximum. It is easy to buy into the shape of an
isosceles trapezoid, and we shall do that in general terms.

Let the trapezoid have an “upper” base of a, a “lower” base of c, with c > a. Let the
trapezoid have equal lateral sides be b and d, with b on the right, d on the left, so the
figure is abcd reading clockwise.

From the right-most end of a, we drop an altitude h perpendicular to a down to c,
where it also meets at right angles. Call the intersection point F . Since c > a, there is a

part of c to the right of F =
c− a

2
or

c

2
− a

2
. We now have a right triangle with

hypotenuse b and legs h and
c

2
− a

2
.
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By the Pythagorean Theorem,

b2 = h2 + (c/2− a/2)2 (1)

b2 = h2 + c2/4− ac/2 + a2/4. (2)

By letting h2 = ac, we have

b2 = ac+ c2/4− ac/2 + a2/4 = c2/4 + ac/2 + a2/4 = (c/2 + a/2)2 (3)

or

b = (a+ c)/2 (4)

The area is:

A = (1/2)(a+ c)
√
ac (5)

The perimeter is:

P = a+ c+ 2(a+ c)/2 = 2(a+ c) (6)

By hypothesis,

A = 2014P (7)

Substituting (5) and (6) into (7),

(1/2)(a+ c)
√
ac = 2014(2a+ 2c) = 4028(a+ c) (8)

Multiplying by 2/(a+ c), √
ac = 8056 (9)

Squaring,
ac = 80562 (10)

Side a must be even in order for b to be an integer. Since b = d = (c+ a)/2, to maximize
the perimeter P = 2(a+ c), we should like a to be the smallest integer possible (this is
because ac is constant). Since it must also be even, let a = 2. Then (10) becomes:

2c = 80562 (11)

So that, c = 32, 449, 568 and b = d = (c+ a)/2 = 16, 224, 785. Thus the largest
perimeter in this case is:

p = 2 + 16, 224, 785 + 32, 449, 568 + 16, 224, 785 = 64, 899, 140

Q.E.D.

Michael continues on as follows:

I would only add one clarification to Ed’s explanation. It is that seemingly arbitrary
assumption that h2 = ac. The point is this. Since A = 2014P , A is an integer and h is
rational. On the other hand if we multiply equation (1) by 4, we obtain
(2b)2 = (2h)2 + (c− a)2. From this it follows that 2h is an integer and 2b, c− a, and 2h
are a Pythagorean triple. Accordingly, 2b = k(m2 + n2), c− a = k(m2 − n2) and
2h = 2kmn or h = kmn. Thus, taking c = km2 and a = kn2, we have,
h2 = k2m2n2 = km2kn2 = ac.
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• 5302: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

If n is an even perfect number, n > 6, and φ(n) is the Euler phi-function, then show
that n− φ(n) is a fourth power of an integer. Find infinitely many integers n such that
n− φ(n) is a fourth power.

Solution 1 by Brian D. Beasley, Presbyterian College, Clinton, SC

(i) If n is an even perfect number with n > 6, then n = 2p−1(2p − 1), where p and 2p − 1
are both odd primes. Since φ is multiplicative, we have φ(n) = 2p−2(2p − 2), which
implies

n− φ(n) = 2p−1(2p − 1)− 2p−2(2p − 2) = 22p−1 − 22p−2 = 22p−2 = (2(p−1)/2)4,

where 2(p−1)/2 is an integer since p is odd.

(ii) One trivial solution is to let n be any prime. Then n− φ(n) = 1. A less trivial
solution is to take n = 24k+1 for any nonnegative integer k. Then

n− φ(n) = 24k+1 − 24k = 24k = (2k)4.

Solution 2 by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie,
Angelo State University, San Angelo, TX

We will begin with the following facts for the phi-function:
1. If p is prime, φ(p) = p− 1.
2. If p is prime and a is a positive integer, φ(pa) = pa−1(p− 1).
3. If the gcd (a,b)=1, φ(ab) = φ(a)φ(b).

We also note that an even perfect number n > 6 can be written in the form
n = 2k−1(2k − 1), where k and 2k−1 are prime and k > 2. Then, since
gcd(2k−1, 2k − 1) = 1 and 2k − 1 is prime,

φ(n) = φ[2k−1(2k − 1)]

= φ(2k−1)φ(2k − 1)

= 2k−2(2k − 2),

= 2k−1(2k−1 − 1).

Further, since k must be an odd prime,

n− φ(n) = 2k−1(2k − 1)− 2k−1(2k−1 − 1)

= 2k−1(2k − 2k−1)

= 2k−1[2k−1(2− 1)]

= 22(k−1)

= (2k−1)2

=
[
22(

k−1
2 )
]2

=
(

2
k−1
2

)4
.

Therefore, n− φ(n) is a fourth power of an integer. If k = 4m+ 1 for m ≥ 1, and p is an
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arbitrary prime,

φ(n) = φ(p4m+1)

= p4m(p− 1)

= p4m+1 − p4m.

Then,

n− φ(n) = p4m+1 − φ(p4m+1)

= p4m+1 − (p4m+1 − p4m)

= p4m

= (pm)4.

Since there are an infinite number of choices for p and m, this provides an example of
infinitely many integers n such that n− φ(n) is a fourth power.

Also solved by Pat Costello, Eastern Kentucky University, Richmond. KY;
Ed Gray, Highland Beach, FL; Kee-Wai Lau, Hong Kong, China; David E.
Manes, SUNY College at Oneonta, Oneonta, NY; David Stone and John
Hawkins, Georgia Southern University, Statesboro, GA, and the proposer.

• 5303: Proposed by Angel Plaza, Universidad de Las Palmas de Gran Canaria, Spain

Let a, b, c, d be positive real numbers Prove that

a4 + b4 + c4 + d4 + 4 ≥ 4
((
a2b2 + 1

) (
b2c2 + 1

) (
c2d2 + 1

) (
d2a2 + 1

))1/4
.

Solution 1 by David E. Manes, SUNY College at Oneonta, Oneonta, NY By
the Arithmetic Mean-Geometric Mean inequality,

((
a2b2 + 1

) (
b2c2 + 1

) (
c2d2 + 1

) (
d2a2 + 1

))1/4

≤ a2b2 + b2c2 + c2d2 + d2a2 + 4

4

with equality if and only if a = b = c = d. Therefore,

4

((
a2b2 + 1

) (
b2c2 + 1

) (
c2d2 + 1

) (
d2a2 + 1

))1/4

≤ a2b2 + b2c2 + c2d2 + d2a2 + 4.

Define vectors ~u and ~v such that ~u =

〈
a2, b2, c2, d2

〉
and ~v =

〈
b2, c2, d2, a2

〉
,

Then the Cauchy-Schwarz inequality implies ~u • ~v = ||~u|| · ||~v|| so that

a2b2 + b2c2 + c2d2 + d2a2 ≤
√
a4 + b4 + c4 + d4

√
b4 + c4 + d4 + a4

= a4 + b4 + c4 + d4.

Hence,

4

((
a2b2 + 1

) (
b2c2 + 1

) (
c2d2 + 1

) (
d2a2 + 1

))1/4

≤ a4 + b4 + c4 + d4 + 4

7



with equality if and only if a = b = c = d.

Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain

a4 + b4 + c4 + d4 + 4 =
((
a2
)2

+
(
b2
)2

+
(
c2
)2

+
(
d2
)2)1/2 ((

a2
)2

+
(
b2
)2

+
(
c2
)2

+
(
d2
)2)1/2

+ 4

≥ a2b2 + b2c2 + c2d2 + d2a2 + 4

=
(
a2b2 + 1

)
+
(
b2c2 + 1

)
+
(
c2d2 + 1

)
+
(
d2a2 + 1

)
≥ 4

(
(a2b2 + 1)(b2c2 + 1)(c2d2 + 1)(d2a2 + 1)

)1/4

,

where we have used the Cauchy-Schwarz and the arithmetic mean-geometric mean
inequalities.

Equality occurs if, and only if, it occurs in both inequalities, that is if, and only if,
a2/b2 = b2/c2 = c2/d2 = d2/a2 and a2b2 + 1 = b2c2 + 1 = c2d2 + 1 = d2a2 + 1.

That is, inequality holds if, and only if, a = b = c = d.

Solution 3 by Albert Stadler, Herrliberg, Switzerland

By the AM-GM inequality,

a4 + b4

2
≥ a2b2

b4 + c4

2
≥ b2c2

c4 + d4

2
≥ c2d2

d4 + a4

2
≥ d2a2.

Adding these inequalities we obtain

a4 + b4 + c4 + d4 + 4 ≥
(
a2b2 + 1

)
+
(
b2c2 + 1

)
+
(
c2d2 + 1

)
+
(
d2a2 + 1

)
.

We apply once more the AM-GM inequality to obtain

(
a2b2 + 1

)
+
(
b2c2 + 1

)
+
(
c2d2 + 1

)
+
(
d2a2 + 1

)
≥ 4

((
a2b2 + 1

)
+
(
b2c2 + 1

)
+
(
c2d2 + 1

)
+
(
d2a2 + 1

))1/4

,

and the claimed statement follows.

Comment by editor: Titu Zvonaru, Comăesti, and Neculai Stanciu, “George
Emil Palade” School, Buzău, Romania jointly solved the problem in the manner of
solution 3, and noted that the statement of the problem can be made stronger for it also
holds for all real numbers, not just the positive ones.
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Also solved by Arkady Alt, San Jose, CA; Elsie M. Campbell, Dionne T.
Bailey, and Charles Diminnie, Angelo State University, San Angelo, TX; José
Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain; Ed Gray, Highland
Beach, FL; Paul M. Harms, North Newton, KS; Kenneth Korbin, New York,
NY; Kee-Wai Lau, Hong Kong, China; Paolo Perfetti, Department of
Mathematics, Tor Vergata University, Rome, Italy, and the proposer.

• 5304: Proposed by Michael Brozninsky, Central Islip, NY

Determine whether or not there exist nonzero constants a and b such that the conic
whose polar equation is

r =

√
a

sin(2θ)− b · cos(2θ)

has a rational eccentricity.

Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie, Angelo State
University, San Angelo, TX

We will begin with the use of the transformation formulas and the following
trigonometric identities to change the polar form into the rectangular form of the
hyperbola:

x = r cos θ) (1)

y = r sin θ (2)

sin(2θ) = 2 sin θ cos θ, (3)

cos(2θ) = cos2 θ − sin2 θ. (4)

Then, using (1), (2), (3), and (4),

r =

√
a

sin(2θ)− b cos(2θ)

r2 =
a

sin(2θ)− b cos(2θ)

2r2 sin θ cos θ − br2(cos2 θ − sin2 θ) = a

2(r sin θ)(r cos θ)− b(r cos θ)2 + b(r sin θ)2 = a

2xy − bx2 + by2 = a

x2 − 2

b
xy − y2 − a

b
= 0.

With the general form of the hyperbola being

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0,

we have A = 1, B = −2

b
, C = −1, and F = −a

b
. The usual methods of rotation of axes

in analytic geometry can be used to ascertain the eccentricity of the hyperbola, or the
following formula [1] gives the eccentricity in a straightforward manner.

e =

√
2
√

(A− C)2 +B2

η(A+ C) +
√

(A− C)2 +B2
, (12)
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where η = 1 if the determinant of the 3x3 matrix
A B/2 D/2

B/2 C E/2

D/2 E/2 F


is negative, or η = −1 if the determinant is positive. Thus, using (6)

e =

√√√√√√√ 2

√
4 +

4

b2

η(0) +

√
4 +

4

b2

=
√

2.

Thus, the eccentricity is irrational for all values of a and b.

Reference:
[1]Ayoub, Ayoub B., “The Eccentricity of a Conic Section,” The College
Mathematics Journal 34(2), March 2003, 116-121.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland
Beach, FL; Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong Kong,
China; David Stone and John Hawkins, Georgia Southern University,
Statesboro, GA, and the proposer.

• 5305: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let x be a positive real number. Prove that

[x]

2x+ {x}
+

[x]{x}
3x2

+
{x}

2x+ [x]
≤ 1

2
,

where [x] is the greatest integer function and {x} is the fractional part of the real
number. I.e., {x} = x− [x] .

Solution 1 by Angel Plaza, Universidad de Las Palmas de Gran Canaria,
Spain

Since, x = bxc+ {x}, then x2 = bxc2 + {x}2 + 2 bxc {x}. Now,

bxc
2x+ {x}

+
{x}

2x+ bxc
=

2x2 + bxc2 + {x}2

6x2 + bxc {x}
=

3x2 − 2 bxc {x}
6x2 + bxc {x}

.

Therefore, the left-hand side of the proposed inequality, LHS is

LHS =
3x2 − 2 bxc {x}
6x2 + bxc {x}

+
bxc {x}

3x2

=
3A− 2B

6A+B
+

B

3A
=

9A2 −B2

18A2 + 3AB

≤ 1

2
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where A = x2 and B = bxc {x}.

Solution 2 by Titu Zvonaru, Comănesti, and Neculai Stanciu “George Emil
Palade” School, Buzău, Romania

We denote a = [x] and b = {x}, so a ≥ 0, b ≥ 0 and x = a+ b.

Because
(2a+ 3b)(3a+ 2b) = 6a2 + 13ab+ 6b2 ≥ 6(a+ b)2,

we have

a

2a+ 3b
+

ab

3(a+ b)2
+

b

3a+ 2b
=

3a2 + 4ab+ 3b2

(2a+ 3b)(3a+ 2b)
+

ab

3(a+ b)

≤ 3a2 + 4ab+ 3b2

6(a+ b)2
+

ab

3(a+ b)2

=
3a2 + 6ab+ 3b2

6(a+ b)2

=
1

2
.

Because we only used the inequality ab ≥ 0, we obtain that equality holds if, and only if
ab = 0, i.e., if, and only if x is an integer or if x ∈ (0, 1).

Solution 3 by David Stone and John Hawkins, Georgia Southern University,
Statesboro, GA

For convenience, let n ≤ x ≤ n+ 1, so [x] = n and {x} = x− n.

Then the given inequality becomes
n

2x+ (x− n)
+
n(x− n)

3x2
+

x− n
2x+ n

≤ 1

2
.

Upon clearing fractions and simplifying, this becomes 0 ≤ n
(
3x3 − 5nx2 + 4n2x− 2n3

)
.

Further algebra simplifies the inequality:

n(x− n)
(
3x2 − 2nx+ 2n2

)
≥ 0

n(x− n)
(
(x− n)2 + 2x2 + n2

)
≥ 0.

Because x ≥ n ≥ 0, this is certainly true.

The final version of the inequality also reveals that equality holds if and only if n = 0
(that is, 0 ≤ x < 1 so{x} = x) or x = n = [x] (that is, x is an integer.)

Also solved by Arkady Alt, San Jose, CA; Bruno Salgueiro Fanego, Viveiro,
Spain; Ed Gray, Highland Beach, FL; Paul M. Harms, North Newton, KS;
Kee-Wai Lau, Hong Kong, China; David E. Manes, SUNY College at
Oneonta, Oneonta, NY; Paolo Perfetti, Department of Mathematics, Tor
Vergata University, Rome, Italy, and the proposer.

• 5306: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania
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Calculate:

∫ 1

0

ln
(
1− x+ x2

)
x− x2

dx.

Solution 1 by Kee-Wai Lau, Hong Kong, China

Let

I1 =

∫ 1

0

ln(1− x+ x2)

x
dx

I2 =

∫ 1

0

ln(1− x+ x2)

1− x
dx

I3 =

∫ 1

0

ln(1 + x3)

x
dx and

I4 =

∫ 1

0

ln(1 + x)

x
dx.

Clearly, I = I1 + I2 and I1 = I3 − I4.
By the substitution x = 1− y into I2, we easily see that I2 = I1.

By the substitution x = y1/3 into I3, we obtain I3 =
1

3
I4.

It follows that I = 2I1 = 2(I3 − I4) =
−4

3
I4. But I4 is a well-known integral with value

π2

12
and so I =

−π2

9
.

Solution 2 by Albert Stadler, Herrliberg Switzerland

We have ∫ 1

0

ln
(
1− x+ x2

)
x− x2

dx =

∫ 1

0

(
1

x
− 1

1− x

)
ln(1− x+ x2)dx

=

∫ 1

0

ln
(
1− x+ x2

)
x

dx+

∫ 1

0

(
ln
(
1− (1− x) + (1− x)2

)
x

dx

= 2

∫ 1

0

ln(1− x+ x2)

x
dx

= 2

∫ 1

0

ln

(
1 + x3

1 + x

)
x

dx

= 2

∫ 1

0

ln(1 + x3)

x
dx− 2

∫ 1

0

ln(1 + x)

x
dx

= 2
∞∑
k=1

(−1)k−1

k

∫ 1

0
x3k−1dx− 2

∞∑
k=1

(−1)k−1

k

∫ 1

0
xk−1dx

12



= 2
∞∑
k=1

(−1)k−1

3k2
− 2

∞∑
k=1

(−1)k−1

k2

= −4

3

∞∑
k=1

(−1)k−1

k2

= −4

3

( ∞∑
k=1

1

k2
− 2

∞∑
k=1

1

(2k)2

)

= −2

3

∞∑
k=1

1

k2
= −2

3
· π

2

6
= −π

2

9
.

The interchange of summation and integration is permitted because of uniform

convergence of the series

∞∑
k=1

(−1)k−1

k
x3k−1 and

∞∑
k=1

(−1)k−1

k
xk−1 in the interval [0, 1].

Addendum: It is noteworthy to mention that the famous relation
∞∑
k=1

1

k2
(

2k

k

) =
ζ(2)

3
=
π2

18
is easily derived from the above integral (see for instance

http://en.wikipedia.org/wiki/Ap%C3%A9ry’s theorem for reference). Indeed,

π2

9
= −

∫ 1

0

ln(1− x+ x2)

x− x2
dx =

∞∑
k=1

1

k

∫ 1

0

(
x− x2

)k−1
dx

=

∞∑
k=1

1

k

∫ 1

0
xk−1 (1− x)k−1 dx =

∞∑
k=1

1

k

Γ(k)Γ(k)

Γ(2k)

=
∞∑
k=1

1

k

(k − 1)!(k − 1)!

(2k − 1)!
= 2

∞∑
k=1

1

k2
k!k!

(2k)!
= 2

∞∑
k=1

1

k2
(

2k

k

) .

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland
Beach, FL; Paolo Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy; Angel Plaza, Universidad de Las Palmas de Gran
Canaria, Spain, and the proposer.

13


