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Solutions to the problems stated in this issue should be posted before
January 15, 2016

• 5367: Proposed by Kenneth Korbin, New York, NY

Given triangle ABC with integer length sides and integer area. The vertices have
coordinates A(0, 0), B(x, y) and C(z, w) with

√
x2 + y2 −

√
z2 + w2 = 1.

Find positive integers x, y, z and w if the perimeter is 84.

• 5368: Proposed by Ed Gray, Highland Beach, FL

Let abcd be a four digit number in base 10, none of which are zero, such that the last
four digits in the square of abcd are abcd, the number itself. Find the number abcd.

• 5369: Proposed by Chirita Marcel, Bucuresti, Romania

Let convex quadrilateral ABCD have area S and side lengths
AB = a,BC = b, CD = c,DA = d. Show that

2 (a + b + c + d)2 + a2 + b2 + c2 + d2 ≥ 36

√(
S2 + abcd cos2

A + C

2

)
.

• 5370: Proposed by Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Spain

Let f(x) and g(x) be arbitrary functions defined for all x ∈ <. Prove that there is a
function h(x) such that

(f(x)− h(x))2015 · (g(x)− h(x))2015

is an odd function for all x ∈ <.

• 5371: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let a1, a2, . . . , an be positive real numbers where n ≥ 4 . Prove that(
a1

an + a2

)2

+

(
a2

a1 + a3

)2

+ . . . +

(
an

an−1 + a1

)2

≥ 4

n

1



• 5372: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

(a) Let k ≥ 2 be an integer. Calculate∫ ∞
0

ln(1 + x)

x k
√
x

dx.

(b) Calculate ∫ ∞
0

ln(1− x + x2)

x
√
x

dx.

Solutions

• 5349: Proposed by Kenneth Korbin, New York, NY

Given angle A with sinA =
5

13
. A circle with radius 1 and a circle with radius x are each

tangent to both sides of the angle. The circles are also tangent to each other. Find x.

Solution by Andrea Fanchini, Cantú, Italy

I) angle A is acute.

With the notations of the figure we have

AB =
√

132 − 52 = 12

the centers of the circles are on the bisector of A and we know that the bisector divides
the opposite side as the ratio of the lengths of the adjacent sides, so

BG

GC
=

12

13
⇒ BG

5−BG
=

12

13
⇒ BG =

12

5

Now we have that

tan
A

2
=

12
5

12
=

1

5
⇒ AH = 5, AE =

√
52 + 12 =

√
26, sin

A

2
=

1√
26
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Finally, we obtain the two solutions

sin
A

2
=

x1
AD

⇒ 1√
26

=
x1√

26− 1− x1
⇒ x1 =

√
26− 1√
26 + 1

sin
A

2
=

x2
AF

⇒ 1√
26

=
x2√

26 + 1 + x2
⇒ x2 =

√
26 + 1√
26− 1

II) angle A is obtuse.

In this case 6 E′AH ′ = 90◦ − A

2
, so with the notations of the figure we have

tan

(
90◦ − A

2

)
= cot

A

2
= 5 ⇒ AH ′ =

1

5
, AE′ =

√(
1

5

)2

+ 12 =

√
26

5

Finally, we obtain the other two solutions (where F ′ is the center of circle with radius x4)

sin

(
90◦ − A

2

)
=

x3
AD′

⇒ 5√
26

=
x3√

26
5 − 1− x3

⇒ x3 =

√
26− 5√
26 + 5

sin

(
90◦ − A

2

)
=

x4
AF ′

⇒ 5√
26

=
x4√

26
5 + 1 + x4

⇒ x4 =

√
26 + 5√
26− 5

Solution 2 by Brain D. Beasley, Presbyterian College, Clinton, SC

Given such a circle of radius 1, there are two circles which are tangent to both sides of
angle A and to the original circle; one is smaller than the original, and the other is
larger. We denote the radius of the smallest of these three circles by x and the radius of
the largest circle by X. We bisect angle A to create three similar right triangles, each
with acute angle A/2 and with opposite sides of lengths x, 1, and X, respectively. Using
the half-angle formula for sine, we have two cases:

If sin(A/2) = 1/
√

26, then the “middle” triangle (which has opposite side of length 1)
has a hypotenuse of length

√
26. Thus the hypotenuse of the smallest triangle has length√

26x, and since the smallest circle is tangent to the “middle” circle, this yields
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√
26 =

√
26x + x + 1.

Hence x =

√
26− 1√
26 + 1

. Similarly, since the largest circle is tangent to the “middle” circle

and has a hypotenuse of length
√

26X, we obtain
√

26X =
√

26 + 1 + X.

Hence X =

√
26 + 1√
26− 1

=
1

x
.

If sin(A/2) = 5/
√

26, then the “middle” triangle (which has opposite side of length 1)
has a hypotenuse of length

√
26/5. Thus the hypotenuse of the smallest triangle has

length
√

26x/5, and since the smallest circle is tangent to the “middle” circle, this yields
√

26

5
=

√
26x

5
+ x + 1.

Hence x =

√
26− 5√
26 + 5

. Similarly, since the largest circle is tangent to the “middle” circle

and has a hypotenuse of length
√

26X/5, we obtain
√

26X

5
=

√
26

5
+ 1 + X.

Hence X =

√
26 + 5√
26− 5

=
1

x
.

Comment: David Stone and John Hawkins of Georgia Southern University
in Statesboro, GA extended the conjecture of the problem. They solved the problem
and then applied the conditions of the problem again, showing that there is a third

larger circle of radius

(√
26 + 1√
26− 1

)2

, or in the obtuse case,

(√
26 + 5√
26− 5

)2

, lying outside

the second one. Continuing on in this manner they noted that there is an infinite
sequence of circles, growing larger geometrically, lying inside angle A, each one tangent
to the sides of A and to its predecessor.

And similarly they noted that there is a infinite sequence of circles below the circle of
radius 1, growing smaller geometrically, lying inside angle A, with each one being
tangent to the sides of A and to its predecessor.

Also solved by Michael Brozinsky, Central Islip, NY; Jerry Chu (Student at
George’s School), Spokane, WA; Bruno Salgueiro Fanego, Viveiro, Spain;
Michael Fried, Kibbutz Revivim, Israel; Ed Gray, Highland Beach, FL; Paul
M.Harms, North Newton, KS; Kee-Wai Lau, Hong Kong, China; John Nord,
Saint George’s School, Spokane, WA; Neculai Stanciu, “George Emil
Palade” School, Buză, Romania and Titu Zvonaru,Comănesti, Romania;
Cassidy Wyse, Becca Gerig and Josh Stimmel (jointly, students at Taylor
University), Upland, IN; Albert Stadler, Herrliberg, Switzerland, and the
proposer.

• 5350: Proposed by Kenneth Korbin, New York, NY
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The four roots of the equation

x4 − 96x3 + 206x2 − 96x + 1 = 0

can be written in the form

x1,2 =

(√
a +

√
b +
√
c

√
a−

√
b +
√
c

)±1

x3,4 =

(√
a +

√
b−
√
c

√
a−

√
b−
√
c

)±1
where a, b, and c are positive integers.

Find a, b, and c if (a, b, c) = 1.

Solution 1 by David E. Manes, SUNY College at Oneonta, Oneonta, NY

The values a, b and c are a = 10, b = 5 and 21. One verifies that these values do yield
the four roots of the polynomial equation. Also, note that
(10, 5, 21) = ((10, 5), 21) = (5, 21) = 1 as required.

Let r =

√
a +

√
b +
√
c

√
a−

√
b +
√
c

and s =

√
a +

√
b−
√
c

√
a−

√
b−
√
c
. If r,

1

r
, s and

1

s
are the roots of the

polynomial equation, then

(x− r)(x− 1

r
)(x− s)(x− 1

s
) = x4 − 96x3 + 206x2 − 96x + 1.

Expanding the left side of the equation and equating coefficients, one obtains

r +
1

r
+ s +

1

s
= 96(

r +
1

r

)(
s +

1

s

)
= 204.

One calculates

r +
1

r
=

√
a +

√
b +
√
c

√
a−

√
b +
√
c

+

√
a−

√
b +
√
c

√
a +

√
b +
√
c

=
2(a + b +

√
c)

a− b−
√
c

,

s +
1

s
=

√
a +

√
b−
√
c

√
a−

√
b−
√
c

+

√
a−

√
b−
√
c

√
a +

√
b−
√
c

=
2(a + b−

√
c)

a− b +
√
c

.

Therefore,

r +
1

r
+ s +

1

s
=

a2 − b2 + c

(a− b)2 − c
= 24 (1)
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(
r +

1

r

)(
s +

1

s

)
=

(a + b)2 − c

(a− b)2 − c
= 51 (2)

Equation (1) written a2 − b2 + c = 24(a− b)2 − c when expanded and simplified yields

23a2 + 25b2 − 48ab− 25c = 0. (3)

Rewrite equations (1) and (2) as follows:

(a− b)2 − c =
a2 = b2 + c

24

(a− b)2 − c =
(a + b)2 − c

51
.

Then
a2 − b2 + c

24
=

(a + b)2 − c

51
or

9a2 − 25b2 − 16ab + 25c = 0. (4)

Adding equations (3) and (4) we get 32a2 − 64ab = 0 or a = 2b since a 6= 0.

Substituting 2b for a in equation (4) one obtains 25c = 2b2 or c =
21

25
b2. Since b and c

are positive integers, it follows that b = 5k for some integer k. Therefore, c = 21k2 and
a = 2b = 10k. Hence, b = 5, a = 10, and c = 21 since (a, b, c) = 1.

Solution 2 by Jerry Chu (student, Saint George’s School), Spokane, WA

Obviously, x1x2 = x3x4 = 1. So we can factor the equation into
(x2 + kx + 1)(x2 + lx + 1); expanding this and equating its coefficients to those in the

given equation we obtain

{
k + l = −96

kl = 204.

Let k = x1 + x2 =
2(a + b +

√
c )

a− b−
√
c

, and similarly l = x3 + x4 =
2(a + b−

√
c )

a− b +
√
c

.

Subtracting, we get k − l =
8a
√
c

(a− b)2 − c
. And also from the above system of equations

k − l =
√

(k + l)2 − 4kl = 20
√

21.

So c = 21 because a, b, c ∈ Z+ and (a, b, c) = 1, therefore 5
(
(a− b)2 − 21

)
= 2a. Call

this Equation 1.

On the other hand, kl =
4
(
(a + b)2 − c

)
(a− b)2 − c

= 204. Therefore, 5
(
(a + b)2 − 21

)
= (51)(2a).

Call this Equation (2). Subtracting Equation 1 from Equation 2 gives us that

(a + b)2 − (a− b)2 =
50(2a)

5
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4ab = 20a
b = 5

Plugging b = 5 into equation 1 we obtain that a = 10. Therefore,


a = 10

b = 5

c = 21.

Solution 3 by Haroun Meghaichi (student, University of Science and
Technology, Houari Boumediene), Algiers, Algeria

Note that the equation in the statement of the problem is equivalent to(
x +

1

x

)2

− 96

(
x +

1

x

)
+ 204 = 0.

If x is a solution to this equation, then x−1 is also a solution. Take

x =

√
a +

√
b +
√
c

√
a−

√
b +
√
c
,

where a, b, c ∈ N and c is not a perfect square and (a, b, c) = 1, which means that

x +
1

x
=

√
a +

√
b +
√
c

√
a−

√
b +
√
c

+

√
a−

√
b +
√
c

√
a +

√
b +
√
c

=
2 (a + b +

√
c)

a− b−
√
c

.

with some basic algebraic manipulations we get(
x +

1

x

)2

− 96

(
x +

1

x

)
+ 204 =

16
(
a2 + 25

(
b2 − ab + c +

√
c (2b− a)

))
(a− b−

√
c)

2 .

therefore 2b = a, the equation becomes 25c = 21b2. Since (b, c) = 1 then b = 5k, c = 21n
for some coprime positive integers k, n, and so n = k2, but (n, k) = 1 so n = k = 1, and

(a, b, c) = (10, 5, 21).

The same technique works on x3,4, so the solution to the problem is (10, 5, 21).

Solution 4 by Brian D. Beasley, Presbyterian College, Clinton, SC

Since x4 − 96x3 + 206x2 − 96x + 1 = (x2 + ux + 1)(x2 + vx + 1) with u = −48 + 10
√

21
and v = −48− 10

√
21, the four roots are

x1,2 = 24 + 5
√

21±
√

1100 + 240
√

21 = 24 + 5
√

21± (4
√

35 + 6
√

15)

and

x3,4 = 24− 5
√

21±
√

1100− 240
√

21 = 24− 5
√

21± (4
√

35− 6
√

15),

with x1 > x2 and x3 > x4. We also note that the roots in each pair are reciprocals, since
(24 + 5

√
21)2 − (4

√
35 + 6

√
15)2 = 1 and (24− 5

√
21)2 − (4

√
35− 6

√
15)2 = 1.

To write the four roots in the desired form, we first set d1 =
√
a +

√
b +
√
c,

d2 =
√
a−

√
b +
√
c, d3 =

√
a +

√
b−
√
c, and d4 =

√
a−

√
b−
√
c. Since
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d1 > d3 > d4 > d2, this justifies our designating x1 as the largest root above, with
x1 > x3 > x4 > x2. As a result, we require x1 + x2 = d1/d2 + d2/d1 = 48 + 10

√
21 and

x3 + x4 = d3/d4 + d4/d3 = 48− 10
√

21. Then rationalizing produces

x1 + x2 =
2(a2 − b2 + c + 2a

√
c)

(a− b)2 − c
= 48 + 10

√
21,

so we set a2 − b2 + c = 24[(a− b)2 − c] and 2a = 5[(a− b)2 − c]. Letting c = 21, we
obtain 48ab− 23a2 = 5(5b2 − 105) and 2a + 10ab− 5a2 = 5b2 − 105. Thus
10a + 2ab− 2a2 = 0, so a− b = 5, which yields a = 10 and b = 5. Similarly, we note that
(a, b, c) = (10, 5, 21) produces x3 + x4 = 48− 10

√
21 as needed.

Finally, we observe that since there is a unique real number x > 1 with
x + 1/x = 48 + 10

√
21, we may conclude

x1 = 24 + 5
√

21 + 4
√

35 + 6
√

15 =

√
10 +

√
5 +
√

21
√

10−
√

5 +
√

21
.

Similarly, we have the corresponding results for x2, x3, and x4.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland
Beach, FL; Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong Kong,
China; Neculai Stanciu, “George Emil Palade” School, Buză, Romania and
Titu Zvonaru, Comănesti, Romania; Albert Stadler, Herrliberg, Switzerland;
David Stone and John Hawkins, Georgia Southern University, Statesboro
GA; Vu Tran (student, Purdue University), West Lafayette, IN, and the
proposer.

• 5351: Proposed by D.M. Bătinetu-Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “George Emil Palade” School, Buzău,
Romania

Let x, y, z be positive real numbers. Show that

xy

x3 + y3 + xyz
+

yz

y3 + z3 + xyz
+

zx

z3 + x3 + xyz
≤ 3

x + y + z
.

Solution 1 by Ed Gray, Highland Beach, FL

Divide the numerator and denominator of the first term on the left side of the inequality
by xy, and the numerator and denominator of the second term by yz and similarly the
third term by zx. Thus, the left hand side becomes

1

x3 + y3

xy
+ z

+
1

y3 + z3

yz
+ x

+
1

z3 + x3

zx
+ y

.

x3 + y3

xy
+ z =

(x + y)(x2 − xy + y2)

xy
+ z

= (x + y)

(
x2

xy
− 1 +

y2

xy

)
+ z

8



= (x + y)

(
x

y
− 1 +

y

x

)
+ z

But
x

y
+

y

z
− 1 ≥ 1, so

x3 + y3

xy
+ z ≥ (x + y + z), and

1

x3 + y3

xy
+ z

≤ 1

x + y + z
.

Each of the other two terms are handled in precisely the same manner, so, to avoid
repetition,

1

x3 + y3

xy
+ z

+
1

y3 + z3

yz
+ x

+
1

z3 + x3

zx
+ y

≤ 1

x + y + z
+

1

y + z + x
+

1

z + x + y
=

3

x + y + z
.

Note that equality holds if, and only if, x = y = z.

Solution 2 by Kee-Wai Lau, Hong Kong, China

We have
xy

x3 + y3 + xyz
+

yz

y3 + z3 + xyz
+

zx

z3 + x3 + xyz

=
1

x + y + z + (x+y)(x−y)2
xy

+
1

x + y + z + (y+z)(y−z)2
yz

+
1

x + y + z + (z+x)(z−x)2
zx

≤ 1

x + y + z
+

1

x + y + z
+

1

x + y + z

=
3

x + y + z
, as required.

Solution 3 by Arkady Alt, San Jose, CA

Since x3 + y3 ≥ xy (x + y) ⇐⇒ x3 + y3 − xy (x + y) = (x + y) (x− y)2 ≥ 0 then∑
cyc

xy

x3 + y3 + xyz
≤
∑
cyc

xy

xy (x + y) + xyz
=
∑
cyc

1

x + y + z
=

3

x + y + z
.

Also solved by Dionne T. Bailey, Elsie Campbell, and Charles Diminnie,
Angelo State University, San Angelo, TX; Jerry Chu (student, Saint
George’s School), Spokane, WA; Bruno Salgueiro Fanego, Viveiro, Spain;
Ethan Gegner (student, Taylor University), Upland, IN; Nikos Kalapodis,
Patras, Greece; David E. Manes, SUNY College at Oneonta, Oneonta, NY;
Paolo Perfetti, Department of Mathematics, Tor Vergata University, Rome,
Italy; Ángel Plaza, University of Las Palmas de Gran Canaria Spain; Henry
Ricardo, New York Math Circle, NY; Albert Stadler, Herrliberg,
Switzerland; Nicusor Zlota, “Traian Vuia” Technical College, Focsani,
Romania; Titu Zvonaru, Comănesti, Romania; and the proposers.
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• 5352: Proposed by Arkady Alt, San Jose, CA

Evaluate
n∑

k=0

xk − (x− 1)
n−1∑
k=0

(k + 1)xn−1−k.

Solution 1 by G.C. Greubel, Newport News, VA

Consider the series
n∑

k=0

xk =
1− xn+1

1− x
for which the series in question becomes

S =

n∑
k=0

xk − (x− 1)

n−1∑
k=0

(k + 1)xn−k−1

=
1− xn+1

1− x
+ (1− x)

[
n−1∑
k=0

xn−k−1 +
n∑

k=0

k xn−k−1

]

=
1− xn+1

1− x
+ (1− x)xn−1

[
1−

(
1
x

)n
1− 1

x

+ x ∂x

(
1−

(
1
x

)n
1− 1

x

)]
=

1− xn+1

1− x
+ (1− x) · 1− xn

1− x
+ (x− 1)xn+2

[
n(x− 1) + 1− xn

xn+2

]
=

1− xn+1

1− x
+ 1− xn + n− 1− xn

1− x

= n + 1.

From this it can be stated that

n∑
k=0

xk − (x− 1)

n−1∑
k=0

(k + 1)xn−k−1 = n + 1.

Solution 2 by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain

Since
n−1∑
k=0

(k + 1)xn−1−k =
n∑

k=1

kxn−k, then (x− 1)
n−1∑
k=0

(k + 1)xn−1−k =

n∑
k=1

kxn−k+1 −
n+1∑
k=2

(k − 1)xn−k+1 = xn +
n∑

k=2

xn−k+1 − n = −n +
n∑

k=1

xk, and therefore

n∑
k=0

xk − (x− 1)

n−1∑
k=0

(k + 1)xn−1−k = 1 + n.

Solution 3 by Henry Ricardo, New York Math Circle, NY

Denote the given expression as Fn(x), where we assume that n ≥ 1 and x 6= 0. Since
F1(x) = 1 + x− (x− 1)(0) = 2 = 1 + 1 and
F2(x) = (1 + x + x2)− (x− 1)(x + 2) = 3 = 2 + 1, we conjecture that Fn(x) = n + 1 for
all nonzero values of x and prove this by induction.
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Suppose that FN (x) = N + 1 for some integer N ≥ 3 and all x 6= 0. Then

FN+1(x) =

N+1∑
k=0

xk − (x− 1)

N∑
k=0

(k + 1)xN−k

= x
N∑
k=0

xk + 1− (x− 1)

(
N−1∑
k=0

(k + 1)xN−k + N + 1

)

= x

N∑
k=0

xk + 1− (x− 1)

(
x

N−1∑
k=0

(k + 1)xN−k−1 + N + 1

)

= 1 + x

(
N∑
k=0

xk − (x− 1)
N−1∑
k=0

(k + 1)xN−k−1

)
− (N + 1)(x− 1)

= 1 + x(N + 1)− (N + 1)(x− 1) = N + 2 = (N + 1) + 1.

Also solved by Dionne T. Bailey, Elsie Campbell, and Charles Diminnie,
Angelo State University, San Angelo, TX; Jerry Chu (student, Saint
George’s School), Spokane, WA; Bruno Salgueiro Fanego, Viveiro, Spain;
Ethan Gegner (student, Taylor University), Upland, IN; Ed Gray, Highland
Beach, FL; Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong Kong,
China; David E. Manes, SUNY College at Oneonta, Oneonta, NY; Haroun
Meghaichi (student, University of Science and Technology, Houari
Boumediene), Algiers, Algeria; Paolo Perfetti, Department of Mathematics,
Tor Vergata University, Rome, Italy; Henry Ricardo (two additional
solutions to his one above), New York Math Circle, New York; Albert
Stadler, Herrliberg, Switzerland; David Stone and John Hawkins of Georgia
Southern University in Statesboro, GA, and the proposer.

5353: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain.

Let A(z) =

n∑
k=0

akz
k be a polynomial of degree n with complex coefficients. Prove that

all its zeros lie in the disk D = {z ∈ C : |z| < r}, where

r =

1 +

(
n−1∑
k=0

∣∣∣∣akan
∣∣∣∣3
)1/2


2/3

Solution 1 by Albert Stadler, Herrliberg, Switzerland

A(z) is a polynomial of degree n. So an 6= 0. Let |z| ≥ r. Then, by Hölder’s inequality,

1

|an|
|A(z)| ≥ |z|n−

n−1∑
k=0

∣∣∣∣akan
∣∣∣∣ |z|k ≥ |z|n−

(
n−1∑
k=0

∣∣∣∣akan
∣∣∣∣3
) 1

3
(

n−1∑
k=0

|z|
3k
2

) 2
3

= |z|n−
(
r

3
2 − 1

) 2
3

(
|z|

3n
2 − 1

|z|
3
2 − 1

) 2
3

≥ |z|n −
(
r

3
2 − 1

) 2
3

(
|z|

3n
2 − 1

|r|
3
2 − 1

) 2
3
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= |z|n −
(
|z|

3n
2 − 1

) 2
3
> |z|n −

(
|z|

3n
2

) 2
3

= 0.

So all zeros lie in the open disk D

Solution 2 by Kee-Wai Lau, Hong Kong, China

According to Theorem (27.4) on p. 124 of [1], we have the following result:

For any p and q such that p > 1, q > 1,
1

p
+

1

q
= 1, the polynomial

f(x) = a0 + a1x + · · · anzn, an 6= 0 has all of its zeros in the circle

|z| <

1 +

n−1∑
j=0

∣∣∣∣ ajan
∣∣∣∣p
q/p


1/q

≤
(

1 + nq/pM q
)1/q

,

where M = max

∣∣∣∣ ajan
∣∣∣∣ , j = 0, 1, · · · , n− 1.

In particular, when p = 3, the result of the above problem follows.

Reference: 1. M. Marden: Geometry of Polynomials, Mathematical Surveys and
Monographs Number 3, American Mathematical Society, (1966).

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain, and the proposer.

• 5354: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let a, b, c > 0 be real numbers. Prove that the series

∞∑
n=1

[
n ·

(
a

1
n − b

1
n + c

1
n

2

)
− ln

a√
bc

]
,

converges if and only if 2 ln2 a = ln2 b + ln2 c.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

Let x be real. By Taylor’s theorem there is a number h = h(x), 0 ≤ h ≤ 1, such that

ex = 1 + x +
x2

2
+

x3

6
ehx. We choose x =

ln a

n
, x =

ln b

n
, x =

ln c

n
and get

a
1
n = 1 +

ln a

n
+

ln2 a

2n2
+

ln3 a

6n3
a

h
n , 0 ≤ h = h(a, n) ≤ 1,

b
1
n = 1 +

ln b

n
+

ln2 b

2n2
+

ln3 b

6n3
b

h
n , 0 ≤ h = h(b, n) ≤ 1,

c
1
n = 1 +

ln c

n
+

ln2 c

2n2
+

ln3 c

6n3
c

h
n , 0 ≤ h = h(c, n) ≤ 1.
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So

∞∑
n=1

n
a

1

n − b

1

n + c

1

n

2

− ln
a√
bc



=
∞∑
n=1

1

2n

(
ln2 a− ln2 b + ln2 c

2

)
+
∞∑
n=1

1

6n2

(
(ln3 a)a

h(a,n)
n − (ln3 b)b

h(b,n)
n + (ln3 c)b

h(c,n)
n

2

)
.

The second sum is convergent. The first sum equals 0 if ln2 a =
ln2 b + ln2 c

2
and it

diverges if ln2 a 6= ln2 b + ln2 c

2
.

Solution 2 by Anastasios Kotronis, Athens, Greece

For x > 0 real number it is

x
1
n = exp

(
lnx

n

)
= 1 +

lnx

n
+

ln2 x

2n2
+O(n−3). (1)

Setting

An = n ·

(
a

1
n − b

1
n + c

1
n

2

)
− ln

a√
bc

and

A =
ln2 a

2
− ln2 b

4
− ln2 c

4
,

so that A = 0⇐⇒ 2 ln2 a = ln2 b + ln2 c, with a, b and c respectively in the place of x in
(1) we get

An =
A

n
+O(n−2). (2)

• If A = 0, (2) gives that for some real c > 0 and positive integer n0,

0 ≤ |An| ≤
c

n2
, n ≥ n0

so
∑
n≥n0

An converges absolutely and hence the given series converges.

• If A 6= 0, (2) gives that for some real c > 0 and positive integer n0,

− c

n2
+ A ≤ An ≤ A +

c

n2
, n ≥ n0

so
∑
n≥n0

An = sgn(A) · ∞ and hence the given series diverges.
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Solution 3 by Paolo Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy

The general term of the series is

n
(

1 +
ln a

n
+

ln2 a

4n2
+ O

(
1

n3

)
− 1

2
− ln b

2n
− ln2 a

8n2
+ O

(
1

n3

)
+

−1

2
− ln c

2n
− ln2 c

8n2
+ O

(
1

n3

)
− ln

a√
bc

)
=

= n(1− 1

2
− 1

2
) + (ln

a√
bc
− ln

a√
bc

) + n
1

8n

(
2 ln2 a− ln2 b− ln2 c

)
+ O

(
1

n2

)
=

= O

(
1

n2

)

whence the absolute convergence.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Kee-Wai Lau, Hong
Kong, China; Haroun Meghaichi (student, University of Science and
Technology, Houari Boumediene), Algiers, Algeria, and the proposer.

Mea Culpa

Apologies to Arkady Alt of San Jose, CA for inadvertently not acknowledging his
solutions to problems 5343, 5344 and 5346.
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