
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
January 15, 2010

• 5080: Proposed by Kenneth Korbin, New York, NY

If p is a prime number congruent to 1 (mod4), then there are positive integers a, b, c,
such that

arcsin
(

a

p3

)
+ arcsin

(
b

p3

)
+ arcsin

(
c

p3

)
= 90o.

Find a, b, and c if p = 37 and if p = 41, with a < b < c.

• 5081: Proposed by Kenneth Korbin, New York, NY

Find the dimensions of equilateral triangle ABC if it has an interior point P such that
PA = 5, PB = 12, and PC = 13.

• 5082: Proposed by David C. Wilson, Winston-Salem, NC

Generalize and prove:

1
1 · 2

+
1

2 · 3
+ · · ·+ 1

n(n + 1)
= 1− 1

n + 1
1

1 · 2 · 3
+

1
2 · 3 · 4

+ · · ·+ 1
n(n + 1)(n + 2)

=
1
4
− 1

2(n + 1)(n + 2)
1

1 · 2 · 3 · 4
+

1
2 · 3 · 4 · 5

+ · · ·+ 1
n(n + 1)(n + 2)(n + 3)

=
1
18
− 1

3(n + 1)(n + 2)(n + 3)
1

1 · 2 · 3 · 4 · 5
+ · · ·+ 1

n(n + 1)(n + 2)(n + 3)(n + 4)
=

1
96
− 1

4(n + 1)(n + 2)(n + 3)(n + 4)

• 5083: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let α > 0 be a real number and let f : [−α, α] → < be a continuous function two times
derivable in (−α, α) such that f(0) = 0 and f ′′ is bounded in (−α, α). Prove that the
sequence {xn}n≥1 defined by

xn =


n∑

k=1

f

(
k

n2

)
, n >

1
α

;

0, n ≤ 1
α

is convergent and determine its limit.
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• 5084: Charles McCracken, Dayton, OH

A natural number is called a “repdigit” if all of its digits are alike.
Prove that regardless of positive integral base b, no natural number with two or more
digits when raised to a positive integral power will produce a repdigit.

• 5085: Proposed by Valmir Krasniqi, (student, Mathematics Department,) University of
Prishtinë, Kosova

Suppose that ak, (1 ≤ k ≤ n) are positive real numbers. Let ej,k = (n− 1) if j = k and
ej,k = (n− 2) otherwise. Let dj,k = 0 if j = k and dj,k = 1 otherwise.

Prove that
n∏

j=1

n∑
k=1

ej,ka
2
k ≥

n∏
j=1

( n∑
k=1

dj,kak

)2

.

Solutions

• 5062: Proposed by Kenneth Korbin, New York, NY.

Find the sides and the angles of convex cyclic quadrilateral ABCD if
AB = BC = CD = AD − 2 = AC − 2.

Solution 1 by David E. Manes, Oneonta, NY

Let x = AB = BC = CD and let y = BD. Then AD = AC = x + 2.

Let α = 6 CAB, β = 6 ABD, and γ = 6 DBC. Finally, in quadrilateral ABCD, we
denote the angle at vertex A by 6 A and similarly for the other three vertices. Then
AB = BC implies α = 6 BCA. Since angles inscribed in the same arc are congruent, it
follows that

α = 6 CAB = 6 CDA,
α = 6 BCA = 6 BDA,
β = 6 ABD = 6 ACD, and
γ = 6 DBC = 6 DAC

Therefore,

6 A = α + γ, 6 B = β + γ, 6 C = α + β and 6 D = 2α = β since AC = AD .

From Ptolemy’s Theorem, one obtains

AC ·BD = AB · CD + AD ·BC or
(x + 2)y = x2 + x(x + 2)

y =
2x(x + 1)

x + 2
.

In triangles ACD and BCD, the law of cosines implies cos γ =
2(x + 2)2 − x2

2(x + 2)2
and

cos γ =
y

2x
=

x + 1
x + 2

respectively. Setting the two values equal yields the quadratic

equation x2 − 2x− 4 = 0 with positive solution x = 1 +
√

5. Hence,

AB = BC = CD = 1 +
√

5 and AD = 3 +
√

5 .

2



Moreover, note that

cos γ =
x + 1
x + 2

=
2 +

√
5

3 +
√

5
=

1 +
√

5
4

implies that

γ = arccos
(

1 +
√

5
4

)
= 360

In 4ACD, γ + β + 2α = 180o or γ + 2β = 1800 so that β =
1800 − 360

2
= 720 and

α = β/2 = 360.

Therefore,

6 A = α + γ = 720 = 2α = 6 D and

6 B = β + γ = 1080 = α + β = 6 C.

Solution 2 by Brian D. Beasley, Clinton, SC

We let a = AB, b = BC, c = CD, d = AD, p = BD and q = AC. Then
a = b = c = d− 2 = q − 2. According to the Wolfram MathWorld web site [1], for a
cyclic quadrilateral, we have

pq = ac + bd (Ptolemy′sTheorem) and q =

√
(ac + bd)(ad + bc)

ab + cd
.

Thus a + 2 =
√

2a2 + 2a, so the only positive value of a is a = 1 +
√

5. Hence
a = b = c = 1 +

√
5 and d = p = q = 3 +

√
5. Using the Law of Cosines, it is

straightforward to verify that 6 ABC = 6 BCD = 108◦ and 6 CDA = 6 DAB = 72◦.

[1] Weisstein, Eric W. “Cyclic Quadrilateral.” From MathWorld–A Wolfram Web
Resource. http://mathworld.wolfram.com/CyclicQuadrilateral.html

Solution 3 by Bruno Salgueiro Fanego, Viveiro, Spain

We show that the sides are 1 +
√

5, 1 +
√

5, 1 +
√

5, 3 +
√

5 and the angles are
1080, 720, 720, 1080.

Let α = AB = BC = CD = AD − 2 = AC − 2, β = 6 CBA and R the circumradius of
ABCD.

By solution 1 of SSM problem 4961,

R =
1
4

√
[aa + a(a + 2)][a(a + 2) + aa][aa + a(a + 2)]

(2a + 1− a)(2a + 1− a)(2a + 1− a)[2a + 1− (a + 2)]
=

a

2

√
2a

a− 1
.

From this and the generalized sine theorem in 4ABC,

a

2R
= sin

(
1800 − β

2

)
=⇒ cos

(
β

2

)
=

√
a− 1
2a

.

By the law of cosines in 4ABC,

cos β =
a2 + a2 − (a + 2)2

2a2
=⇒ cos

(
β

2

)
=

√
1 + cos β

2
=
√

3a2 − 4a− 4
2a

.
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Hence, √
a− 1
2a

=
√

3a2 − 4a− 4
2a

=⇒ a2 − 2a− 4 = 0 =⇒ a = 1 +
√

5 = 2φ,

so the sides are

AB = BC = CD = 1 +
√

5 and AD = a + 2 = 3 +
√

5 .

Then β = 2arccos

√ √
5

2(1 +
√

5)
= 1080, so the angles are

6 CBA = 1080, 6 DCB = 6 CBA = 1080, 6 ADC = 1800− 1080 = 720 and 6 BAD = 720.

Also solved by Michael Brozinsky, Central Islip, NY; Paul M. Harms, North
Newton, KS; Kee-Wai Lau, Hong Kong, China; Charles McCracken, Dayton,
OH; Boris Rays, Brooklyn, NY; David Stone and John Hawkins (jointly),
Statesboro, GA, and the proposer.

• 5063: Proposed by Richard L. Francis, Cape Girardeau, MO.

Euclid’s inscribed polygon is a constructible polygon inscribed in a circle whose
consecutive central angle degree measures form a positive integral arithmetic sequence
with a non-zero difference.

a) Does Euclid’s inscribed n-gon exist for any prime n greater than 5?
b) Does Euclid’s n-gon exist for all composite numbers n greater than 2?

Solution by Joseph Lupton, Jacob Erb, David Ebert, and Daniel Kasper,
students at Taylor University, Upland, IN

a) For an inscribed polygon to fit this description, there has to be an arithmetic
sequence of positive integers where the number of terms in the sequence is equal to the
number of sides of the polygon and the terms sum to 360. So if the first term is f and
the constant difference between the terms is d, the sum of the terms is

f · n +
n(n− 1)

2
d = 360.

Thus, f · n +
n(n− 1)

2
d = 360 =⇒ n

∣∣∣∣360. That is, n is a prime number greater than five

and n

∣∣∣∣23 · 33 · 5. But there is no prime number greater than five that divides 360. So

there is no Euclidean polygon that can be inscribed in a circle whose consecutive central
angle degree measures form a positive integral arithmetic sequence with a non-zero
difference.

b) Euclid’s inscribed n-gon does not exist for all composite numbers greater than two.
Obviously, if n gets too large, then the terms n(n−1)

2 d will be greater than 360 even if
d = 1 which is the minimal d allowed. There is no Eculidean inscribed n-gon for n = 21.

If there were, the the sum of central angles would be f · n + n · d · n− 1
2

implies that 21
divides 360. Similarly, there is no 14-gon for if there were, it would imply that 7 divides
360.

• Comments and elaborations by David Stone and John Hawkins, Statesboro
GA
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We note that this problem previously appeared as part of Problem 4708 in this journal
in March, 1999; however the solution was not published. Also, a Google search on the
internet turned up a paper by the proposer in the Bulletin of the Malaysian
Mathematical Sciences Society in which the answer to both questions is presented as
being “no”. {See “The Euclidean Inscribed Polygon” (Bull. Malaysian Math Sc. Soc
(Second series) 27 (2004), 45-52).}
David and John solved the problem and then elaborated on it by considering the
possibility that the inscribed polygon many not enclose the center of the circle. And it is
here that things start to get interesting.

(In the case where the inscribed polygon does not include the center of the circle, and
letting a be the first term in the arithmetic sequence and d the common difference, they
noted that the largest central angle must be the sum of the previous n− 1 central
angles, and they proceeded as follows:)

a + (n− 1)d = Sn−1 =
n− 1

2

(
2a + (n− 2)d

)
or

2a + 2(n− 1)d = 2a(n− 1) + (n− 1)(n− 2)d or

2a(n− 2) = −(n− 1)(n− 4)d.

For n = 3, this happens exactly when a = d; although n = 3 is of no concern for the
stated problem, we shall return to this case later.

For n ≥ 4, this condition is never satisfied because the left-hand side is positive and the
right-hand side ≤ 0.

David and John then determined all Euclidean inscribed n-gons as follows:

The cited paper by the poser points out that 30 is the smallest constructible angle of
positive integral degree. In fact, it is well known that an angle is constructible if, and
only if, its degree measure is an integral multiple of 30. This implies that a and d must
both be multiples of 3. We wish to find all solutions of the Diophantine equation
(1) n(2a + (n− 1)d) = 24 · 32 · 5, where a and d are multiples of 3.

Letting a = 3A and d = 3D, the above equation becomes

(2) n

(
2A + (n− 1)D

)
= 24 · 3 · 5 = 240, so n must be a divisor of 240.

Moreover, the cofactor 2A + (n− 1)D is bounded below. That is

2A + (n− 1)D ≥ 2 + (n− 1) = n + 1. So

240
n

= 2A + (n− 1)D ≥ 1, and

n(n + 1) ≤ 240.

These conditions allow only n = 3, 4, 5, 6, 8, 10, 12, and 15.
First we show that n = 12 fails. For in this case (2) becomes

12(2A + 11D) = 240, or
2A + 11D = 20,
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and this linear Diophantine equation has no positive solutions.

All other possible values of n do produce corresponding Euclidean n−gons.

The case n = 3 is perhaps the most interesting. There are twenty triangles inscribed in
semi-circle: (3A, 6A, 9A) for A = 1, 2, . . . 20, each having a = d, and nineteen more
triangles which properly enclose the center of the circle: (3t, 120, 240− 3t), for
t = 21, 22, . . . , 39, each with d = 120− a.

We consider in detail the case n = 4, in which case Equation (2) becomes
4(2A + 3D) = 24 · 3 · 5, or 2A + 3D = 60. The solution of this Diophantine equation is
given by {

A = 3t
D = 20− 2t

where the integer parameter t satisfies 0 < t < 10.

We exhibit the results in tabular form, with all angles in degrees:

t A a = 3A D d = 3D Central angles of inscribed quarilateral
1 3 9 18 54 9, 63, 117, 171
2 6 18 16 48 18, 66, 114, 162
3 9 27 14 42 27, 69, 111 153
4 12 36 12 36 36, 72, 108, 144
5 15 45 10 30 45, 75, 105, 135
6 18 54 8 24 54, 78, 102, 126
7 21 63 6 18 63, 81, 99, 117
8 24 72 4 12 72, 84, 96, 108
9 27 81 2 6 81, 87, 93, 99

That is, the central angles are (9t, 60 + 3t, 120− 3t, 180− 9t) for t = 1, 2, . . . , 9. Thus
we have nine Euclidean inscribed quadrilaterals.

Similarly for n = 5, we have eleven Euclidean inscribed pentagons, with central angles
(6t, 36 + 3t, 72, 108− 3t, 144− 6t) for t = 1, 2, . . . , 11.

Similarly for n = 6, we have three Euclidean inscribed hexagons, with central angles
(45, 51, 57, 63, 75), (30, 42, 54, 66, 78, 90) and (15, 33, 52, 69, 105).

For n = 8, we have two Euclidean inscribed octagons with central angles
(24, 30, 36, 42, 48, 54, 60, 66) and (3, 15, 27, 39, 51, 63, 75, 87).

For n = 10, we have one Euclidean inscribed decagon, with central angles
(9, 15, 21, 27, 33, 39, 45, 51, 57, 63).

For n = 15, we have one Euclidean inscribed 15-gon with central angles
(3, 6, 9, 12, 15, 18, 21, 24 27, 30, 33, 36, 39, 42, 45).

There is a grand total of 66 Euclidean inscribed n-gons!

A final note: If n(n + 1) divides 240, then a = d = 3
240

n(n + 1)
=

720
n(n + 1)

produces a

Euclidean inscribed n−gon.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Boris Rays,
Brooklyn, NY, and the proposer.

• 5064: Proposed by Michael Brozinsky, Central Islip, NY.
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The Lemoine point of a triangle is that point inside the triangle whose distances to the
three sides are proportional to those sides. Find the maximum value that the constant
of proportionality, say λ, can attain.

Solution 1 by David E. Manes, Oneonta, NY

The maximum value of λ is
√

3/6 and is attained when the triangle is equilateral.

Given the triangle ABC let [ABC] denote its area. The distance from the Lemoine point

to the three sides are in the ratio λa, λb, λc where λ =
2[ABC]

a2 + b2 + c2
and a, b, c denote

the length of the sides BC, CA and AB respectively. Let α = 6 BAC, β = 6 CBA, and
γ = 6 ACB. Then

[ABC] =
1
2
bc · sinα =

1
2
ac · sinβ =

1
2
ab · sin γ.

Therefore,

a2 + b2 + c2 ≥ ab + bc + ca = [ABC]
(

1
sinα

+
1

sinβ
+

1
sin γ

)
.

The function f(x) =
1

sinx
is convex on the interval (0, π). Jensen’s inequality then

implies

f(α) + f(β) + f(γ) ≥ 3f

(
α + β + γ

3

)
= 3f

(
π

3

)
=

3

sin (
π

3
)

= 2
√

3

with equality if and only if α = β = γ = π/3. Therefore, a2 + b2 + c2 ≥ 4
√

3 · [ABC] so
that

λ =
2[ABC]

a2 + b2 + c2
≤ 2[ABC]

4
√

3 · [ABC]
=
√

3
6

with equality if and only if the triangle ABC is equilateral.

Solution 2 by John Nord, Spokane, WA

Without loss of generality we can denote the coordinates of 4ABC as
A(0, 0), B(1, 0), C(b, c), the coordinates of the Lemoine point L as (x1, y1), the constant
of proportionality from L to the sides as λ, the coordinates on AB of the foot of the
perpendicular from L to AB as D(x1, 0), the coordinates on BC of the foot of the
perpendicular from L to BC as E(x2, y2) and the coordinates on AC of the foot of the
perpendicular from L to AC as F (x3, y3).

The distance from L to AB equals LD = λ · 1.
The distance from L to BC equals LE = λ ·

√
(1− b)2 + c2 and

The distance from L to AC equals LF = λ ·
√

b2 + c2.

The coordinates of E can be found by finding the intersection of LE and BC. That is, by
solving: 

y =
c

b− 1
x +

c

1− b
, and

y =
1− b

c
x + y1 +

b− 1
c

x1.
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And the coordinates of F can be found by finding the intersection of LF and AC. That
is, by solving, 

y =
c

b
x and

y =
−b

c
x + y1 +

b

c
x1.

Once we have computed (x2, y2) and (x3, y3) in terms of b, c, x1 and λ, we apply the
distance relationships above. This results in:

x1 =
b + b2 + c2

2(1− b + b2 + c2)
y1 = λ =

c

2(1− b + b2 + c2)
.

The maximum value of λ is obtained by solving the system of partial derivatives
∂λ

∂b
= 0

∂λ

∂c
= 0.

This yields: c =
√

3
2

and b =
1
2
. Substituting these values into y1 above gives λ =

√
3

6
as

the maximum value of the constant of proportionality.

Solution 3 by Charles Mc Cracken, Dayton, OH

The Lemoine point is also the intersection of the symmedians.

The medians of a triangle divide the triangle in two equal areas.

The medians intersect at the centroid, G.

Any point other than G is closer than G to one side of the triangle.

In 4ABC let a denote the side (and its length) opposite 6 A, b the side opposite 6 B,
and c the side opposite 6 C. Let L denote the Lemoine point.

If the distance from L to side a is λa, then λa less the distance from G to a we call γa.

Similarly for sides b and c.

For λ = γ, L must coincide with G.

This will happen when the medians and symmedians coincide.

This occurs when the triangle is equiangular (600 − 600 − 600) and hence equilateral
(a = b = c).

In that case, λ =
√

3
6
≡ 0.289.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain, John Hawkins and
David Stone (jointly), Statesboro, GA; Kee-Wai Lau, Hong Kong, China;
Tom Leong, Scranton, PA, and the proposer.

• 5065: Mihály Bencze, Brasov, Romania.

Let n be a positive integer and let x1 ≤ x2 ≤ · · · ≤ xn be real numbers. Prove that

1)
n∑

i,j=1

|(i− j)(xi − xj)| =
n

2

n∑
i,j=1

|xi − xj |.
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2)
n∑

i,j=1

(i− j)2 =
n2(n2 − 1)

6
.

Solution 1 by Paul M. Harms, North Newton, KS

1) Both summations in part 1) have the same terms for i > j that they have for i < j
and have 0 for i = j. Equality will be shown for i > j.

Each row below is the left summation of part 1) of the problem for i > j and for a fixed
j starting with j = 1.

1(x2 − x1) + 2(x3 − x1) + . . . + (n− 1)(xn − x1)
1(x3 − x2) + 2(x4 − x2) + . . . + (n− 2)(xn − x2)

...
1(xn−1 − xn−2) + 2(xn − x

n−2)

1(xn − xn−1)

The coefficient of x1 is (−1)[1 + 2 + . . . + (n− 1)] =
−(n− 1)n

2
. Note that the coefficient

of xn (looking at the diagonal from lower left to upper right is

1 + 2 + . . . + (n− 1) =
(n− 1)n

2
.

The coefficient of x2 is (−1)[1 + 2 + . . . + (n− 2)] + 1 =
−(n− 2)(n− 1)

2
+ 1, where the

one is the coefficient of x2 in row 1.

The coefficient of xn−1 is the negative of the coefficient of x2.

The coefficient of xr where r is a positive integer less than
n + 1

2
is

(−1)[1 + 2 + . . . (n− r)] + 0 + 1 + . . . (r − 1) =
(−1)(n− r)(n− r + 1)

2
+

(r − 1)r
2

=
(−1)n(n− 2r + 1)

2
= (−1)

n

2
[(n− r) + (1− r)].

The coefficients of xr andxn+1−r are the negatives of each other.

If we write out the right summation of part 1) for i > j, we can obtain a triangular form
like that above except that each coefficient of the difference of the x′s is 1. Using the
form just explained, the coefficient of x1 is (−1)(n− 1) and the coefficient of xn along
the diagonal is (n− 1).

The coefficient of x2 is (−1)(n− 2) + 1 where the (+1) is the coefficient of x2 in row 1.

For xr, where r is a positive integer less than
n + 1

2
, the coefficient is

(−1)(n− r) + (r − 1) where (r − 1) comes from the xr having coefficients of one in each
of the first (r− 1) rows. The coefficient of xr on the right side of the inequaity of part 1)
is then

n

2
(−1)[(n− r) + (1− r)] which is the same as the left side of the inequality.

Also, the coefficients of xr and xn+1−r are negative of each other.
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2) To show part 2), first consider the summation of each of the three terms i2, j2,−2ij.

For each j, the summation of i2 from i = 1 to n is 12 + 22 + . . . n2 =
n(n + 1)(2n + 1)

6
.

Then the summation of i2 where both i and j go from 1 to n is
n(n + 1)(2n + 1)

6
. The

summation of j2 is the same value.

The summation of ij is

1(1 + 2 + . . . + n) + 2(1 + 2 + . . . + n) + . . . + n(1 + 2 + . . . + n) = (1 + 2 + . . . + n)2

=
n2(n + 1)2

22

The total summation of the left side of part 2) is

2n2(n + 1)(2n + 1)
6

− 2n2(n + 1)2

22
= n2(n + 1)

[
2n + 1

3
− n + 1

2

]
=

n2(n + 1)(n− 1)
6

.

Solution 2 by Paolo Perfetti, Mathematics Department, University “Tor
Vergata,” Rome, Italy

We begin with 1). The result is achieved by a double induction. For n = 1 there is
nothing to say. Let’s suppose that 1) holds for any 1 ≤ n ≤ m. For n = m + 1 the
equality reads as

m+1∑
i,j=1

|i− j| |xi − xj | =

m∑
i,j=1

|i− j| |xi − xj |+
m+1∑
i=1

|i−m− 1| |xi − xm+1|+
m+1∑
j=1

|m + 1− j| |xm+1 − xj | =

m

2

m∑
i,j=1

|xi − xj |+ 2
m+1∑
i=1

|i−m− 1| (xm+1 − xi).

(in the second passage the induction hypotheses has been used) and we need it equal to

m + 1
2

m+1∑
i,j=1

|xi − xj | =
m

2

m∑
i,j=1

|xi − xj |+
1
2

m∑
i,j=1

|xi − xj |+ (m + 1)
m∑

i=1

|xi − xm+1|.

Comparing the two quantities we have to prove

2
m+1∑
i=1

(m + 1− i)(xm+1 − xi) =
1
2

m∑
i,j=1

|xi − xj |+ (m + 1)
m∑

i=1

|xi − xm+1|

or

m∑
i=1

(xm+1 − xi)(m + 1− 2i) =
1
2

m∑
i,j=1

|xi − xj |

or
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−
m∑

i=1

xi(m + 1− 2i) =
1
2

m∑
i,j=1

|xi − xj | since
m∑

i=1

(m + 1− 2i) = 0.

Here starts the second induction. For m = 1 there is nothing to do as well. Let’s suppose
that the equality holds true for any 1 ≤ m ≤ r. For m = r + 1 we have to prove that

−
r+1∑
i=1

xi(r + 2− 2i) =
1
2

r∑
i,j=1

|xi − xj |+
1
2

r+1∑
i=1

(xr+1 − xi) +
1
2

r+1∑
i=1

(xr+1 − xi).

which, by using the induction hypotheses is

−
r∑

i=1

xi(r + 1− 2i)−
r∑

i=1

xi + rxr+1 = −
r∑

i=1

xi(r + 1− 2i) +
r+1∑
i=1

(xr+1 − xi).

or

−
r∑

i=1

xi + rxr+1 = (r + 1)xr+1 − xr+1 −
r∑

i=1

xi.

namely the expected result.

To prove 2) we employ 1) by calculating
n

2

n∑
i,j=1

|i− j|. The symmetry of the absolute

value yields

n

2

n∑
i,j=1

|i− j| = n
n∑

1≤i<j≤n

(j− i) = n
n∑

i=1

n∑
j=i+1

(j− i) = n
n∑

i=1

n−i∑
k=1

k =
n

2

n∑
i=1

(n− i)(n− i+1).

The last sum is equal to
n

2

n−1∑
k=1

k(k + 1).

In the last step we show that
n−1∑
k=1

k(k + 1) =
n3 − n

3
.

For n = 1 both sides are 0. Let’s suppose it is true for 1 ≤ n ≤ m− 1.
For n = m we have

m−1∑
k=1

k(k+1)+m(m+1) =
m3 −m

3
+m(m+1) = m(m+1)

m + 2
3

=
(m + 1)3 − (m + 1)

3
.

Finally,
n

2
n3 − n

3
= n2 n2 − 1

6
The proof is complete.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Michael C. Faleski,
University Center, MI; Kee-Wai Lau, Hong Kong, China; Boris Rays,
Brooklyn, NY; David Stone and John Hawkins (jointly), Statesboro, GA,
and the proposer.
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• 5066: Proposed by Panagiote Ligouras, Alberobello, Italy.
Let a, b, and c be the sides of an acute-angled triangle ABC. Let abc = 1. Let H be the
orthocenter, and let da, db, and dc be the distances from H to the sides BC, CA, and AB
respectively. Prove or disprove that

3(a + b)(b + c)(c + a) ≥ 32(da + db + dc)2.

Solution by Kee-Wai Lau, Hong Kong, China

We prove the inequality. First we have (a + b)(b + c)(c + a) ≥ (2
√

ab)(2
√

bc)(2
√

ca) = 8.

Hence it suffices to prove that da + db + dc ≤
√

3
2

. Let s, r, R be respectively the
semi-perimeter, in-radius and circumradius of triangle ABC. Let the foot of the
perpendicular from A to BC be D and the foot of the perpendicular from B to AC be
E so that 4BCE ∼ 4BHD. Hence,

da = DH =
(BD)(CE)

BE

=
(c cos B)(a cos C)

c sinA
= 2R cos B cos C, and similarly,

db = 2R cos C cos A and dc = 2R cosA cosB .

Therefore, by the well known equality

cos A cos B + cos B cos C + cos C cos A =
r2 + s2 − 4R2

4R2
, we have

da + db + dc =
r2 + s2 − rR2

2R
.

And by a result of J. C. Gerretsen: Ongelijkheden in de Driehoek Nieyw Tijdschr.Wisk.
41(1953), 1-7, we have s2 ≤ 4R2 + 4Rr + 3r2. Thus

da + db + dc =
2r(R + r)

R
≤ 3r,

which follows from L. Euler’s result that R ≥ 2r.

It remains to show that r ≤ 1
2
√

3
. But this follows from the well known result that

s ≥ 3
√

3r and the fact that 1 = abc = 4rsR ≥ 4r(3
√

3)r(2r) = 24
√

3r3.

This completes the solution.

Also solved by the proposer.

• 5067: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let a, b, c be complex numbers such that a + b + c = 0. Prove that

max {|a|, |b|, |c|} ≤
√

3
2

√
|a|2 + |b|2 + |c|2.
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Solution by Tom Leong, Scranton, PA

Since a + b + c = 0, |a|, |b|, and |c| form the sides of a (possibly degenerate) triangle. It
follows from the triangle inequality that the longest side, max{|a|, |b|, |c|}, cannot exceed

half of the perimeter,
1
2

(|a|+ |b|+ |c|), of the triangle. Using this fact along with the
Cauchy-Schwarz inequality gives the desired result:

max{|a|, |b|, |c|} ≤ 1
2

(|a|+ |b|+ |c|)

=
1
2

(1 · |a|+ 1 · |b|+ 1 · |c|)

≤ 1
2

√
12 + 12 + 12

√
|a|2 + |b|2 + |c|2

=
√

3
2

√
|a|2 + |b|2 + |c|2.

Also solved by Brian D. Beasley, Clinton, SC; Michael Brozinsky, Centeral
Islip, NY; Bruno Salgueiro Fanego, Viveiro, Spain; Paul M. Harms, North
Newton, KS; Kee-Wai Lau, Hong Kong, China; David E. Manes, Oneonta,
NY; Manh Dung Nguyen (student, Special High School for Gifted Students),
HUS, Vietnam; Paolo Perfetti, Mathematics Department, University “Tor
Vergata,” Rome, Italy; Boris Rays, Brooklyn, NY; Dmitri V. Skjorshammer
(student, Harvey Mudd College), Claremont, CA; David Stone and John
Hawkins (jointly), Statesboro, GA, and the proposer.
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