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*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
December 15, 2018

5505: Proposed by Kenneth Korbin, New York, NY

Given a Primitive Pythagorean Triple (a, b, c) with b2 > 3a2. Express in terms of a and
b the sides of a Heronian Triangle with area ab(b2 − 3a2).

(A Heronian Triangle is a triangle with each side length and area an integer.)

5506: Proposed by Daniel Sitaru, “Theodor Costescu” National Economic College,
Drobeta Turnu-Severin, Mehedinti, Romania

Find Ω = det

[(
1 5
5 25

)100

+

(
25 −5
−5 1

)100
]

.

5507: Proposed by David Benko, University of South Alabama, Mobile, AL

A car is driving forward on the real axis starting from the origin. Its position at time
0 ≤ t is s(t). Its speed is a decreasing function: v(t), 0 ≤ t. Given that the drive has a
finite path (that is lim

t→∞
s <∞), that v(2t)/v(t) has a real limit c as t→∞, find all

possible values of c.

5508: Proposed by Pedro Pantoja, Natal RN, Brazil

Let a, b, c be positive real numbers such that a+ b+ c = 1. Find the minimum value of

f(a, b, c) =
a

3ab+ 2b
+

b

3bc+ 2c
+

c

3ca+ 2a
.
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5509: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let x, y, z be positive real numbers that add up to one and such that

0 <
x

y
,
y

z
,
z

x
<
π

2
. Prove that

√
x cos

(y
z

)
+

√
y cos

( z
x

)
+

√
z cos

(
x

y

)
<

3

5

√
5.

5510: Proposed by Ovidiu Furdui and Alina Ŝıntămărian both at the Technical
University of Cluj-Napoca, Cluj-Napoca, Romania

Calculate
∞∑
n=1

[4n (ζ(2n)− 1)− 1] ,

where ζ denotes the Riemann zeta function.

Solutions

5487: Proposed by Kenneth Korbin, New York, NY

Given that
(x+ 1)4

x(x− 1)2
= a with x =

b+
√
b−
√
b

b−
√
b−
√
b
. Find positive integers a and b.

Solution 1 by David E. Manes, Oneonta, NY

If x =
b+

√
b−
√
b

b−
√
b−
√
b
, then x+ 1 =

2b

b−
√
b−
√
b

and x− 1 =
2
√
b−
√
b

b−
√
b−
√
b
. Moreover,

(x+ 1)4 =
16b4

(b−
√
b−
√
b)4

and (x− 1)2 =
4(b−

√
b)

(b−
√
b−
√
b)2

. Therefore,

a =
(x+ 1)4

x(x− 1)2
=

16b4

(b−
√

b−
√
b)4

(b+
√

b−
√
b)(4(b−

√
b)

(b−
√

b−
√
b)3

=
16b4

4(b−
√
b)(b+

√
b−
√
b)(b−

√
b−
√
b)

=
4b4

b3 − b2 − b2
√
b+ 2b

√
b− b

.

Note that the two terms with
√
b have opposite signs and cancel off if b = 2. Let b = 2.

Then b3 − b2 − b2
√
b+ 2b

√
b− b = 2 and a = 26/2 = 32. Hence, b = 2 and a = 32 is the

unique solution.

Solution 2 by Anthony J. Bevelacqua, University of North Dakota, Great
Falls, ND
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For notational convenience set c =
√
b−
√
b. We have x =

b+ c

b− c
so x+ 1 =

2b

b− c
and

x− 1 =
2c

b− c
. Thus a is

(x+ 1)4

x(x− 1)2
=

(
2b

b− c

)4

· b− c
b+ c

·
(
b− c

2c

)2

=
4b4

(b2 − c2)c2
.

and so a(b2 − c2)c2 = 4b4. Now

(b2 − c2)c2 = (b2 − b+
√
b)(b−

√
b)

= (b3 − b2 − b) + (2b− b2)
√
b

and so
a((b2 − b− 1) + (2− b)

√
b) = 4b3.

Thus (2− b)
√
b is a rational number. Therefore either b = 2 or b = d2 for some positive

integer d.
In the first case our last displayed equation yields a · 1 = 4 · 23 and so a = 32. Thus
a = 32 and b = 2 is a solution to our problem.
In the second case we have

(b2 − b− 1) + (2− b)
√
b = d4 − d3 − d2 + 2d− 1.

Call this n. We have an = 4b3. Since a and b are positive so is n. Since d and n are
relatively prime we see that n must be a divisor of 4. If n = 1 we have

d4 − d3 − d2 + 2d− 1 = 1 and so d4 − d3 − d2 + 2d− 2 = 0.

By the rational root theorem the only possible positive integer d would be 1 and 2, but
neither of these are roots. Similarly n = 2 gives d4 − d3 − d2 + 2d− 3 = 0 and n = 4
gives d4 − d3 − d2 + 2d− 5 = 0, but, again, neither of these have positive integer roots.
Thus the only solution to our problem is a = 32 and b = 2.

Solution 3 by Brian D. Beasley, Presbyterian College, Clinton, SC

Let c = b−
√
b−
√
b. Then x+ 1 = 2b/c and x− 1 = 2(b− c)/c, so

a =
(x+ 1)4

x(x− 1)2
=

16b4

c4
· c3

4(b− c)2(b+
√
b−
√
b)

=
4b4

(b2 − b+
√
b)(b−

√
b)

.

This in turn yields a = 4b4/(b3 − b2
√
b− b2 + 2b

√
b− b). Since a is a positive integer, we

must have either b = n2 for some positive integer n or −b2 + 2b = 0. If b = n2, then

a = 4n2 + 4n+ 8 +
4(n3 + n2 − 3n+ 2)

n4 − n3 − n2 + 2n− 1
;

the fraction in this latter expression is not an integer for 1 ≤ n ≤ 5 and is strictly
between 0 and 1 for n > 5, so a is not a positive integer. Thus −b2 + 2b = 0, so b = 2
and hence a = 32.

Also solved by Michel Bataille, Rouen, France; Ed Gray, Highland Beach,
FL; Khanh Hung Vu (Student), Tran Nghia High School, Ho Chi Minh,
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Vietnam; Kee-Wai Lau, Hong Kong, China; Ioannis D. Sfikas, National and
Kapodistrain University of Athens, Greece; David Stone and John Hawkins,
Georgia Southern University, Statesboro, GA, and the proposer.

5488: Proposed by Daniel Sitaru, “Theodor Costescu” National Economic College,
Drobeta, Turnu-Severin, Mehedinti, Romania

Let a, and b be complex numbers. Solve the following equation:

x3 − 3ax2 + 3(a2 − b2)x− a3 + 3ab2 − 2b3 = 0.

Solution 1 by Dionne Bailey, Elsie Campbell, Charles Diminnie, and Trey
Smith, Angelo State University, San Angelo, TX

To begin, we note that

x3 − 3ax2 + 3
(
a2 − b2

)
x− a3 + 3ab2 − 2b3

can be re-written as (
x3 − 3ax2 + 3a2x− a3

)
− 3b2x+ 3ab2 − 2b3

or
(x− a)3 − 3b2 (x− a)− 2b3.

Hence, if we substitute y = x− a, the given equation becomes

y3 − 3b2y − 2b3 = 0. (1)

Next, the left side of equation (1) can be re-grouped to obtain

y3 − 3b2y − 2b3 =
(
y3 + b3

)
− 3b2 (y + b)

= (y + b)
[(
y2 − by + b2

)
− 3b2

]
= (y + b)

(
y2 − by − 2b2

)
= (y + b)2 (y − 2b) .

Therefore, the solutions of (1) are y = 2b and y = −b (double solution).

Finally, since y = x− a, the solutions of the original equation are x = a+ 2b and
x = a− b (double solution).

Solution 2 by Michel Bataille, Rouen, France

Let p(x) denote the polynomial on the left-hand side. Then, a short calculation gives

p(X + a) = X3 − 3b2X − 2b3 = (X + b)2(X − 2b)

which has 2b as a simple root and −b as a double one. It immediately follows that the
solution of the given equation are a− b, a− b, a+ 2b.

Solution 3 by Paul M. Harms, North Newton, KS
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The equation can be written as (x− a)3 − 3ab2(x− a)− 2b3 = 0. If b = 0, the solution is
x = a. If b is not zero, let x− a = yb. Then the equation become b3(y3 − 3y − 2) = 0.
We have y3 − 3y − 2 = (y − 2)(y + 1)2 = 0. The y solutions are 2,−1 and −1. The
solutions of the equation in the problem are x = a+ 2b and x = a− b as a double root.

Solution 4 by G. C. Greubel, Newport News,VA

0 = x3 − 3 a x2 + 3(a2 − b2)x− (a3 − 3ab2 + 2b3)

= x3 − 3ax2 + (a− b)(3a+ 3b)x− ((a2 − 2ab+ b2)(a+ 2b)

= x3 − (2(a− b) + (a+ 2b))x2 + (a− b)((a− b) + 2(a+ 2b))x

− (a− b)2(a+ 2b)

= (x2 − 2(a− b)x+ (a− b)2)(x− (a+ 2b))

= (x− (a− b))2 (x− (a+ 2b)).

From this factorization the solutions of the cubic equation are

x ∈ {a− b, a− b, a+ 2b}.

Editor′s comment: David Stone and John Hawkins made an instructive comment
in their solution that merits being repeated. They wrote: “We confess - we did not
immediately recognize the factorization. We originally used Cardano’s Formula to find
the solutions.

However, there is a line of heuristic reasoning which would lead to the solution. If we
consider a = b, the equation become x3 − 3ax2 = 0, which has x = 0 as a double root.
Hence, the difference a− b could be significant. Trying x = a− b (via synthetic division)
then proves to be productive.”

Also solved by Brian D. Beasley, Presbyterian College, Clinton, SC;
Anthony J. Bevelacqua, University of North Dakota, Great Falls, ND; Bruno
Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland Beach, FL; Kee-Wai
Lau, Hong Kong, China; David E. Manes, Oneonta, NY; Paolo Perfetti,
Department of Mathematics, Tor Vergata University, Rome, Italy; Ángel
Plaza, University of Las Palmas de Gran Canaria, Spain; Ioannis D. Sfikas,
National and Kapodistrain University of Athens, Greece; Neculai Stanciu
“George Emil Palade” School, Buzău, Romania and Titu Zvonaru,
Comănesti, Romania (two solutions); David Stone and John Hawkins,
Georgia Southern University, Statesboro, GA, and the proposer.

5489: Proposed by D.M. Bătinetu-Giurgiu, Bucharest, Romania, and Neculai Stanciu,
“George Emil Palade” School Buzău, Romania

If a > 0, compute

∫ a

0

(
x2 − ax+ a2

)
arctan(ex − 1)dx.

Solution by Soumitra Mandal, Chandar Nagore, India

Let x = a− y ⇒ dx = −dy, when x = 0, y = a; when x = a; y = 0.

Ω =

∫ a

0
(x2 − xa+ a2) tan−1(ex − 1)dx
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= −
∫ 0

a
{(a− y)2 − a(a− y) + a2} tan−1(ea−y − 1)dy

=

∫ a

0
(y2 − ay + a2) tan−1(ea−y − 1)dy, therefore,

2Ω =

∫ a

0
(x2 − ax+ a2){tan−1(ex − 1) + tan−1(ea−x − 1)}dx

=

∫ a

0
(x2 − xa+ a2) tan−1

ex − 1 + ea−x − 1

1− (ex − 1)(ea−x − 1)
dx

=

∫ a

0
(x2 − ax+ a2) tan−1(1)dx =

π

4

(
x3

3
− ax

2

2
+ a2x

∣∣∣∣∣
x=a

x=0

)
=

5πa3

24
.

Therefore, Ω =
5πa3

48
.

Also solved by Ioannis D. Sfikas, National and Kapodistrain University of
Athens, Greece, and the proposers.

5490: Proposed by Moshe Stupel, “Shaanan” Academic College of Education and
Gordon Academic College of Education, and Avi Sigler, “Shaanan” Academic College of
Education, Haifa, Israel

Triangle ABC whose side lengths are a, b, and c lies in plane P . The
segmentA1A, BB1, CC1 satisfy:

A1A ⊥ P, B1B ⊥ P, C1C ⊥ P,

where A1A = a, B1B = b and C1C = c, as shown in the figure. Prove that 4A1B1C1 is
acute -angled.
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Solution 1 by Michel Bataille, Rouen, France

We shall use the dot product, recalling that
−→
U ·
−→
V has the same sign as cos(6 (

−→
U ,
−→
V )).

We calculate

−−−→
A1B1 ·

−−−→
A1C1 = (

−−→
A1A+

−−→
AB +

−−→
BB1) · (

−−→
A1A+

−→
AC +

−−→
CC1)

= a2 + 0− ac+ 0 +
−−→
AB ·

−→
AC + 0− ab+ 0 + bc

=
1

2
(a2 + b2 + c2 − 2ac− 2ab+ 2bc) (since 2

−−→
AB ·

−→
AC = b2 + c2 − a2)

=
1

2
(b+ c− a)2.

Thus,
−−−→
A1B1 ·

−−−→
A1C1 > 0 and so 6 B1A1C1 is acute.

Similarly, we obtain
−−−→
B1C1 ·

−−−→
B1A1 = 1

2(c+ a− b)2 > 0 and
−−−→
C1A1 ·

−−−→
C1B1 = 1

2(a+ b− c)2 > 0 and therefore 6 C1B1A1 and 6 A1C1B1 are acute as well.

Solution 2 by Muhammad Alhafi, Al Basel High School, Aleppo, Syria

We will prove that B1C1
2
< B1A1

2
+A1C1

2
.

If we draw a line through C1 parallel to BC we will see that a2 + (b− c)2 = B1C1
2
.

In the same manner we have:
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A1B1
2

= c2 + (a− b)2, A1C1
2

= b2 + (a− c)2.
So the inequality is equivalent to:

a2 + (b− c)2 < c2 + (a− b)2 + b2 + (a− c)2

⇐⇒ 2ab+ 2ac < a2 + b2 + c2 + 2ab

⇐⇒ 2a(b+ c) < a2 + (b+ c)2, which follows from the AM−GM inequality.

Following this line of reasoning we can prove: B1A1
2
< B1C1

2
+A1C2

1 and that

A1C1
2
< B1A1

2
+B1C1

2
. Hence, 4A1B1C1 is acute.

Solution 3 by Michael N. Fried, Ben-Gurion University, Beer Sheva, Israel

Suppose we are given an arbitrary triangle such as ABC with sides BC = a, AC = b,
and AB = c. Let the lines AA′, BB′, CC ′ with lengths a, b, and c, respectively, be
drawn perpendicular to the plane of ABC (see figure 1). Then the triangle A′B′C ′ with
sides B′C ′ = a′, A′C ′ = b′, and A′B′ = c′ is acute.

Let us consider first the special case when ABC is an isosceles triangle. First, it is
obvious that if ABC is isosceles then also A′B′C ′ will be isosceles. Moreover, if BC is
the base and the angle at A is already acute then the angle at A′ will also be acute since
a = a′ and c′ = b′ > b = c so that the angle at A′ will be less than the angle at A. So we
need only consider the case when A is obtuse. In that case, also a > b = c.
It makes life easier to consider A′B′C ′ with respect to the plane UVW drawn through
C ′ (or B′) and parallel to ABC so that also UVW ∼= ABC. In that case, VW coincides
with B′C ′ and UA′ = a− c (or a− b) (see figure 2).
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With that out of the way, we need to show that if α is the apex angle at A′ then α < 90◦,
or, by the law of cosines, that 2c′2 cosα = 2c′2 − a2 > 0. Or since c′2 = c2 + (a− c)2:

2c2 + 2(a− c)2 − a2 > 0

Or, opening parentheses and rearranging:

4c2 − a(4c− a) > 0

Note that by the triangle inequality, 2c− a > 0 so that certainly 4c− a > 0. By the
arithmetic/geometric mean inequality, then, we have (keeping in mind that a 6= 4c− a
since otherwise 2c = a which is impossible):

4c2 =

(
a+ (4c− a)

2

)2

> a(4c− a)

So, indeed, 4c2 − a(4c− a) > 0 and α < 90◦.
Now, let us consider the case in which ABC is not isosceles. Let us assume that
a > b > c. As before, consider A′B′C ′ with respect to the plane UVW drawn through
C ′ and parallel to ABC. Then we have WB′ = b− c and UA′ = a− c (see figure 3).
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We have then:
a′2 = a2 + (b− c)2

b′2 = b2 + (a− c)2

c′2 = c2 + (a− b)2

Observe that as a > b > c, also a′ > b′ > c′, for consider a′2 − b′2:

a′2 − b′2 = a2 + (b− c)2 − b2 − (a− c)2 = (a− b)2c > 0

so that a′2 > b′2. Similarly, we can show that b′2 > c′2. Since a′ is thus the longest side
of A′B′C ′, the angle at A′, which we call α′, is the largest angle. Therefore, it suffices to
show that α′ < 90◦. Again, by the law of cosines this means we must show:

2b′c′ cosα′ = b′2 + c′2 − a′2 > 0

Substituting the expressions above for a′, b′, and c′, we have to show:

b2 + (a− c)2 + c2 + (a− b)2 − a2 − (b− c)2 > 0

After some algebra, the expression on the left-hand side can be rewritten as follows:

c2 − (a− b)(2c− (a− b))

Notice that a− b > 0 since we are assuming that a is the longest side of ABC. Also since
by the triangle inequality we have c− (a− b) = b+ c− a > 0 , it is certainly true that
2c− (a− b) > 0. Therefore, again by the arithmetic/geometric-mean inequality, we have:

c2 =

(
(a− b) + (2c− (a− b)

2

)2

> (a− b)(2c− (a− b))
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So, indeed,
b′2 + c′2 − a′2 = c2 − (a− b)(2c− (a− b)) > 0

From which we have α′ < 90◦.

Also solved by Yagub N. Aliyev, Problem Solving Group of ADA University,
Baku Azerbeaijan; Kee-Wai Lau, Hong Kong, China; David E. Manes,
Oneonta, NY; Ioannis D. Sfikas, National and Kapodistrain University of
Athens, Greece; Titu Zvonaru, Comănesti, Romania and Neculai Stanciu,
“George Emil Palade” School, Buzău, Romania; David Stone and John
Hawkins, Georgia Southern University, Statesboro, GA, and the proposers.

5491: Proposed by Roger Izard,Dallas, TX

Let O be the orthocenter of isosceles triangle ABC, AB = AC. Let OC meet the line
segment AB at point F. If m = FO, prove that c4 ≥ m4 + 11m2c2.

Solution 1 by Ed Gray, Highland Beach, FL

We assume that c is one of the two equal legs. We re-write the inequality by dividing by
c4, so:

1) 1 ≥
(m
c

)4
+ 11

(m
c

)2
. We attempt to prove the inequality by finding the maximum

value of
m

c
. We shall use the following notation: vertex A is the apex (top) with angle

2t. We note that 2t < 90, otherwise O = A, or O is external to the triangle. Vertex B is
at lower left, and has value 90− t. Vertex C is at lower right, also having a value of
90− t. Let P be the mid-point of BC, y = BF, c− y = AF, m = OF , and the base,

BC = s, so that BP = PC =
s

2
. We note that 4FAC is a right triangle, so

6 ACF = 90− 2t. Since 6 ACB = 90− t, by subtraction,

2) 6 FCB = t. From 4AOF ,

3) tan(t) =
m

c− y
. From 4FCB,

4) sin(t) =
y

s
, or y = s · sin(t). From 4ABP ,

5) sin(t) =
s

2c
, or c =

s

2 sin(t)
. Substituting (4) and (5) into (3),

6) m = tan(t)
s

(2 sin(t))− s · sin(t)
. Dividing (6) by (5),

7)
m

c
=

sin(t)

cos(t)
· s

2 sin(t)
− s · sin(t) · 2 sin

t

s
, or

8)
m

c
=

sin(t)− 2 sin3(t)

cos(t)

9)
d

dt

m

c
=

(
cos(t)

(
cos(t)− 6 cos(t) sin2(t)

)
−
(
sin(t)− 2 sin3(t)

)
(− sin(t))

cos2(t)
. Simplifying,

10) 8 sin4(t)− 6 sin2(t) + 1 = 0. This is a quadratic equation in sin2(t) with roots:

11) 16 sin2(t) = 6±
√

(36− 32), or

12) sin2(t) =
1

2
, or sin2(t) =

1

4
. The former is impossible, since t = 45, and 2t = 90,
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which would put O = A. Therefore, sin(t) =
1

2
, and t = 30, 2t = 60, and we have an

equilateral triangle. Then c = s, y =
c

2
, and from (3)

13) tan(30) =
m
c

2

, and

14)
m

c
=

1

2
tan(30) =

√
3

6
,
(m
c

)2
=

3

36
=

1

12
,
(m
c

)4
=

1

144
, so

15)
(m
c

)4
+ 11

(m
c

)2
=

1

144
+

11

12
< 1, and the conjecture is proved. Q.E.D.

Solution 2 by Albert Stadler, Herrliberg, Switzerland

The angle α at the vertex A is ≤ π

2
, because OC meets the line segment AB. Clearly

AF = AC cosα and OF = AF tan
(α

2

)
= AC cosα tan

(α
2

)
. Furthermore

OF

AC
=
m

c
.

Therefore we need to prove that

cos4 α tan4 α

2
+ 11 cos2 α tan2 α

2
≤ 1, for 0 ≤ α ≤ α

2
. (1)

We note that

y = cosα tan
(α

2

)
=
(

2 cos2
α

2
− 1
)

tan
α

2
=

 2

1 + tan2 α

2

− 1

 tan
α

2
= tan

α

2

1− tan2 α

2

1 + tan2 α

2

= x
1− x2

1 + x2
,

where we have put x = tan
α

2
. Clearly the function x = tan

α

2
maps the interval

[
0,
α

2

]
to the interval [0, 1]. We claim that

max
0≤x≤1

x
1− x2

1 + x2
=

√√
5− 2

√
5− 1

2
.

Indeed,

d

dx
x

1− x2

1 + x2
=

1− 4x2 − x4

(1 + x2)2
=
−
(
x2 + 2x+

√
5
) (
x−

√√
5− 2

)(
x+

√√
5− 2

)
(1 + x2)2

,

so the maximum of x
1− x2

1 + x2
in the interval [0, 1] is assumed at

√√
5− 2 and equals

√√
5− 2

3−
√

5√
5− 1

=
√√

5− 2

√
5− 1

2
.

Therefore

cos4 α tan4 α

2
+ 11 cos2 α tan2 α

2
≤

(√√
5− 2

√
5− 1

2

)4

+ 11

(√√
5− 2

√
5− 1

2

)4

= 1,

and (1) is proven.

Solution 3 by Kee-Wai Lau, Hong Kong, China

Without loss of generality, let b = c = 1. Let AB = AC and AO is perpendicular to BC

so AO bisects 6 BAC. Let 6 BAC = 2θ, where 0 < θ ≤ π

4
.
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By considering triangles AOF and ACF , we obtain respectively m = AF tan θ and
AF = cos 2θ, so that m = tan θ cos 2θ. Let t = tan θ, so that 0 < t ≤ 1. Then

m =
t(1− t2)

1 + t2
. We have

dm

dt
=

1− 4t2 − t4

(1 + t2)2
, which vanishes when t =

√√
5− 2, at

which m attains its maximum value of

√
5
√

5− 11

2
. Hence

m4 + 11m2 ≤ 123− 55
√

5

2
+

55
√

5− 121

2
= 1,

and this completes the solution.

Also solved by Ioannis D. Sfikas, National and Kapodistrain University of
Athens, Greece, David Stone and John Hawkins, Georgia Southern
University, Statesboro, GA, and the proposer.

5492: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let a, b, c, d be four positive numbers such that ab+ ac+ ad+ bc+ bd+ cd = 6. Prove
that√

abc

a+ b+ c+ 3d
+

√
bcd

b+ c+ d+ 3a
+

√
cda

c+ d+ a+ 3b
+

√
dab

d+ a+ b+ 3c
≤ 2

√
2

3
.

Solution 1 by Kee-Wai Lau, Hong Kong, China

By the inequality of Cauchy-Schwarz, the left side of the inequality of the problem does

not exceed 2

√
abc

a+ b+ c+ 3d
+

bcd

b+ c+ d+ 3a
+

cda

c+ d+ a+ 3b
+

dab

d+ a+ b+ 3c
.

From the given relation, we have d =
6− ab− bc− ca

a+ b+ c
, so that

abc

a+ b+ c+ 3d
=

2abc(a+ b+ c)

(a− b)2 + (b− c)2 + (c− a)2 + 36
≤ abc(a+ b+ c)

18
.

Similarly,

bcd

b+ c+ d+ 3a
≤ bcd(b+ c+ d)

18

cda

c+ d+ a+ 3b)
≤ cda(c+ d+ a)

18

(dab

d+ a+ b+ 3c)
≤ dab(d+ a+ b)

18
.

Hence the inequality of the problem will follow from

abc(a+ b+ c) + bcd(b+ c− d) + cda(c+ d+ a) + dab(d+ a+ b) ≤ 12. (1)

Now it can be checked readily that the left side of (1) equals

13



2(ab+ ac+ ad+ bc+ bd+ cd)2 − (a− b)2(c− d)2 − (b− c)2(d− a)2 − (c− a)2(b− d)2

6
,

which does not exceed
(ab+ ac+ ad+ bc+ bd+ cd)2

3
= 12.

This completes the solution.

Solution 2 by Ed Gray, Highland Beach, FL

1) Let n = a+ b+ c+ d. Then:

2) n2 = a2 + b2 + c2 + d2 + 2ab+ 2ac+ 2ad+ 2bc+ 2bd+ 2cd = a2 + b2 + c2 + d2 + 12

3) Suppose that a = b = c = d = a. Then (2) becomes:

4) (4a)2 = 4a2 = 12, and a = 1.

The left side of the inequality becomes:

5) 4
√

1/6) = 2
√

4/6 = 2
√

2/3, and we see that the inequality becomes an equality. We
need show that the expression is a maximum when a = b = c = d. We do this by leaving
a = b = 1, c = .99, d = 1.01 so that the constant n = a+ b+ c+ d is maintained.
Substituting the new values into the left side,

6)
√
.99/6.02 +

√
.9999/6 +

√
.9999 +

√
1.01/5.98 =

7) .405526605 + .408227878 + .407549194 + .410969976 = 1.632273698 < 1.632993162 =
2
√

2/3.

Hence the function is a maximum for a = b = c = d, and the inequality is proven.

Solution 3 by Neculai Stanciu “George Emil Palade” School, Buzău,
Romania and Titu Zvonaru, Comănesti, Romania

With the Cauchy-Buniakovski-Schwarz inequality we have

abc

a+ b+ c+ 3d
+

bcd

b+ c+ d+ 3a
+

cda

c+ d+ a+ 3b
+

dab

d+ a+ b+ 3c

≤ 4

(
abc

a+ b+ c+ 3d
+

bcd

b+ c+ d+ 3a
+

cda

c+ d+ a+ 3b
+

dab

d+ a+ b+ 3c

)
.

With the AM−HM inequality we have

abc

a+ b+ c+ 3d
=

abc

a+ d+ b+ d+ c+ d
≤ 1

9

(
abc

a+ d
+

abc

b+ d
+

abc

c+ d

)

abc

a+ b+ c+ 3d
+

bcd

b+ c+ d+ 3a
+

cda

c+ d+ a+ 3b
+

dab

d+ a+ b+ 3c
≤

≤ 1

9

(
abc

a+ d
+

bcd

a+ d
+

abc

b+ d
+

acd

b+ d
+

abc

c+ d
+

abd

c+ d
+

bcd

a+ b
+

acd

a+ b
+

bcd

a+ c
+

abd

a+ c
+

abd

b+ c
+

acd

b+ c

)
=

=
1

9
(bc+ ac+ ab+ cd+ bdf + ad) =

2

3
.
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Hence, by the inequalities from above we obtain the desired inequality!

Solution 4 by Marian Ursărescu, National College “Roman-Voda,” Roman,
Romania

Cauchy’s Inequality implies

4
∑ abc

a+ b+ c+ 3d
≥

(∑√
abc

a+ b+ c+ 3d

)2

⇒

∑√
abc

a+ b+ c+ 3d
≤ 2

√∑ abc

a+ b+ c+ 3d
⇒

∑√
abc

a+ b+ c+ 3d
≤ 2

√∑ abc

(a+ d) + (b+ d) + (c+ d)
(1)

But, (x + y + z )
( 1

x
+

1

y
+

1

z

)
≥ 9 ⇒ 1

x+ y + z
≤ 1

9

(1

x
+

1

y
+

1

z

)
, which implies

1

(a+ d) + (b+ d) + (c+ d)
≤ 1

9

( 1

a+ d
+

1

b+ d
+

1

c+ d

)
(2)

From (1) and(2) we obtain,

∑√
abc

a+ b+ c+ 3d
≤ 2

3

√∑
abc
( 1

a+ d
+

1

b+ d
+

1

c+ d

)
. (3)

But

∑
abc
( 1

a+ d
+

1

b+ d
+

1

c+ d

)
=

abc

a+ d
+

abc

b+ d
+

abc

c+ d
+

bcd

a+ b
+

bcd

a+ c
+

bcd

a+ d
+

+
cda

b+ a
+

cda

b+ c
+

cda

b+ d
+

dab

c+ a
+

dab

c+ b
+

dab

c+ d
=

=
bc(a+ d)

a+ d
+
ac(b+ d)

b+ c
+
ab(c+ d)

c+ d
+
bc(a+ b)

a+ b
+

4d(a+ c)

a+ c
+
ad(4 + d)

4 + d
=

15



ab+ ac+ ad+ bc+ 4d+ cd = 6. (4)

Equations (3) and (4) implies that

∑√
abc

a+ b+ c+ 3d
≤ 2

3

√
6 = 2

√
2

3

Solutions 5 and 6 by Paolo Perfetti, Department of Mathematics, Tor
Vergatta University, Rome, Italy

First Proof The first step uses the concavity of the function
√
x yielding

∑
cyc

√
abc

a+ b+ c+ 3d
≤ 2

√∑
cyc

abc

a+ b+ c+ 3d
≤ 2

√
2

3

that is ∑
cyc

abc

a+ b+ c+ 3d
≤ 2

3

Cauchy–Schwarz reversed yields

1

a+ d
+

1

b+ d
+

1

c+ d
≥ 9

a+ b+ c+ 3d

so it suffices to prove

1

9

(
abc

a+ d
+

abc

b+ d
+

abc

c+ d
+

bcd

d+ a
+

bcd

b+ a
+

bcd

c+ a
+

+
cda

a+ b
+

cda

c+ b
+

cda

d+ b
+

dab

a+ c
+

dab

b+ c
+

dab

d+ c

)
≤ 2

3

ab+ bc+ ca+ ad+ bd+ cd

6

We can rewrite it as

abc

a+ d
+

bcd

d+ a
+

abc

b+ d
+

cda

d+ b
+

abc

c+ d
+

dab

d+ c
+

bcd

b+ a
+

cda

a+ b
+

bcd

c+ a
+

dab

a+ c
+

+
cda

c+ b
+

dab

c+ b
≤ ab+ bc+ ca+ ad+ bd+ cd

This is actually an equality since

abc

a+ d
+

bcd

d+ a
= bc

and so on for the other five cases. This concludes the proof.

Proof 6 (Computer assisted) The first step uses the concavity of the function
√
x

yielding ∑
cyc

√
abc

a+ b+ c+ 3d
≤ 2

√∑
cyc

abc

a+ b+ c+ 3d
≤ 2

√
2

3
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that is ∑
cyc

abc

a+ b+ c+ 3d
≤ 2

3

First case d = 0. The inequality is

abc

a+ b+ c
≤ 2

3
(1)

We know that (√
3
√
abc(a+ b+ c)

)2
= 3abc(a+ b+ c) ≤ (ab+ bc+ ca)2

⇐⇒ abc(a+ b+ c) ≤ (ab)2 + (bc)2 + (ca)2

and this holds true by the AGM (ab)2 + (ac)2 ≥ a2bc and cyclic. Based on this we can
write

6 = ab+ bc+ ca ≥
√

3
√
abc(a+ b+ c) ⇐⇒ abc(a+ b+ c) ≤ 12

which inserted in (1) gives

3
12

a+ b+ c

1

a+ b+ c
≤ 2 ⇐⇒ (a+ b+ c)2 ≥ 18

This follows easily by
(a+ b+ c)2 ≥ 3(ab+ bc+ ca) = 18

Second case d = 1 which is allowed by the homogeneity of the inequality after writing∑
cyc

abc

a+ b+ c+ 3d
≤ 2

3

ab+ bc+ cd+ da+ ac+ bd

6

For d = 1 the above inequality becomes

abc

a+ b+ c+ 3
+

bc

b+ c+ 1 + 3a
+

ca

c+ 1 + a+ 3b
+

ab

1 + a+ b+ 3c
≤ 2

3
(2)

This is a algebraic symmetric inequality in three variables and we employ the so called
“UVW” theory. Thus we change variables

a+ b+ c = 3u, ab+ bc+ ca = 3v2, abc = w3

By expanding (2) we get

A(a, b, c)
∑
cyc

(
8ab+ 3a+ 16a2 + 26a3 + 16a4 − 150a2b2 + 8a4bc+ 36a2b2c+

+42a3bc+ 36a2bc− 150a2b2 + 26a3b3 + 3a5
)

+

+A(a, b, c)
∑
sym

(
−11a3b2c− 11a3b+ 3a5b+ 16a4b2 − 11a3b2 + 8a4b

)
+

+A(a, b, c)(−150a2b2c2 + 42abc)
.
= A(a, b, c)B(a, b, c)

A(a, b, c) = −9(a+ b+ c+ 3)(b+ c+ 1 + 3a)(c+ 1 + a+ 3b)(1 + a+ b+ 3c)
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Now we prove the Lemma that: The polynomial B(a, b, c) is a concave parabola in the
variable w3.

Proof of the Lemma We concentrate on the terms of order six, the only terms containing
w6. ∑

cyc

(8a4bc+ 26a3b3) +
∑
sym

(−11a3b2c+ 3a5b+ 16a4b2)− 150(abc)2 (3)

and once introduced the new variables (u, v, w), we are interested in those terms
containing w6. We have,∑

cyc

a4bc = abc
∑
cyc

a3 = w3(3w3 + 27u3 − 27uv2)

∑
cyc

a3b3 = 27v6 − 27uv2w3 + 3w6,
∑
sym

a3b2c = w3(9uv2 − 3w3),

Moreover, ∑
sym

a5b =
∑
cyc

a
∑
cyc

a5 −
∑
cyc

a6,
∑
cyc

a5 =
∑
cyc

a3
∑
cyc

a2 − 2
∑
sym

a3b2

Since a2 + b2 + c2 = 9u2 − 6v2, in
∑
sym

a5b only
∑
sym

a6 contains w6 and precisely

∑
cyc

a6 = 729u6 − 1458u4v2 + 729u2v4 + 162u3w3 − 54v6 − 108uv2w3 + 3w6

∑
sym

a4b2 =
∑
cyc

a2
∑
cyc

a4 −
∑
cyc

a6

The coefficient of the term w6 of (3) is

24 + 26 · 3 + 11 · 3− 3 · 3− 16 · 3− 150 = −72

and so the Lemma has been proved.

Since A(a, b, c) < 0, −B(a, b, c) is a convex parabola whose maximum is attained at one
or both the extreme points of variations of w3. The “UVW” theory states that once
fixed the values of u and v, the minimum value of w occurs when abc = 0 = w3 or when
b = c (or cyclic) while the maximum value occurs when b = c (or cyclic). So we need to
study two cases.

First case. c = 0.

ab+ bc+ cd+ da+ ac+ bd = 6 ⇐⇒ a = (6− b)/(1 + b)

Inequality (2) becomes

−(5b2 − 16b+ 14

3(7 + b+ b2)
≤ 0

which evidently holds true.

Second case. c = b.
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ab+ bc+ cd+ da+ ac+ bd = 6 ⇐⇒ a = (6− b2 − 2b)/(1 + 2b)

Inequality (2) becomes

−(b2 − 7)(7b4 − 18b3 − 27b2 − 64b− 114)(b− 1)2

3(4b+ 7b2 + 7)(−2b+ b2 + 19)(3 + b2 + 2b)
≤ 0 (4)

Clearly a ≥ 0 so b ≤
√

7− 1 and then b2 − 7 ≤ 0. Moreover

7b4 − 18b3 − 27b2 ≤ 0 ⇐⇒ b ≤ (9 +
√

270)/7

and thus 7b4 − 18b3 − 27b2 − 64b− 114 ≤ 0. The conclusion is that (4) holds true and
this completes the proof.

Also solved by Michel Bataille, Rouen, France; Ioannis D. Sfikas, National
and Kapodistrain University of Athens, Greece, and the proposer.

Mea Culpa

Brian D. Beasley of Presbyterian College in Clinton, SC should have been
credited with having solved problem 5510.
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