
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
April 15, 2020

• 5577: Proposed by Kenneth Korbin, New York, NY

Convex quadrilateral ABCD with integer length sides is inscribed in a circle with diameter
AD = 625. Find the perimeter if

(
AB,BC,CD

)
= 1.

• 5578: Proposed by Roger Izard, Dallas, TX

In triangle ABC points F,E, and D lie on lines segments AB,BC, and AC respectively,

such that
AF

BA
=
BE

BC
=
DC

AC
and 6 BAE = 6 CBD = 6 ACF . Prove or disprove: Triangle

ABC must be an equilateral triangle.

• 5579: Proposed by Daniel Sitaru, National Economic College “Theodor Costescu”, Mehed-
inti, Romania

Prove: If a, b ∈ <, a ≤ b, then log 5 ·
∫ b

a
5x

2
dx+ log 5·

∫ b

a
5x

4
dx ≥ 5b − 5a.

• 5580: Proposed by D.M. Bătinetu-Giurgiu “Matei Basarab” National College, Bucharest,
Romania and Neculai Stanciu, “George Emil Palade” School, Buzău, Romania

Compute: lim
n→∞

1(
n
√

(2n− 1)!!
)2 n∑

k=1

[(
2k
√
k! + 2(k+1)

√
(k + 1)!

)2]
where [x] denotes the in-

teger part of x.
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• 5581: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let a, b, c be the lengths of the sides of an acute triangle ABC. Prove that√
a2 + 2bc

b2 + c2 − a2
+

√
b2 + 2ca

c2 + a2 − b2
+

√
c2 + 2ab

a2 + b2 − c2
≥ 3
√

3.

• 5582: Proposed by Ovidiu Furdui and Alina Sîntămărian, Technical University of Cluj-
Napoca, Cluj-Napoca, Romania

Calculate

lim
n→∞

n

√∫ 1

0

∫ 1

0

(
x+ y2 + x3 + · · ·+ x2n−1 + y2n

n

)n
dxdy.

Solutions

• 5559: Proposed by Kenneth Korbin, New York, NY

For every positive integer N there are two Pythagorean triangles with area
(N)(N + 1)(2N + 1)(2N − 1)(4N + 1)(4N2 + 2N + 1). Find the sides of the triangles if
N = 4.

Solution 1 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX

If a and b are the sides and c is the hypotenuse of a Pythagorean triangle 4, then a,
b, and c are positive integers for which c2 = a2 + b2. It is well-known that one way to
generate such triangles is to set

a = k
(
m2 − n2

)
b = 2kmn (1)

c = k
(
m2 + n2

)
for positive integers m, n, and k such that m > n, mn (mod 2), and gcd (m,n) = 1. Then,

Area (4) =
1

2
ab

= k2mn
(
m2 − n2

)
. (2)

For this problem, we are given that

Area (4) = (4) (5) (9) (7) (17) (73) .

Therefore, by (2), we must find positive integers m, n, and k such that m > n, mn
(mod 2), gcd (m,n) = 1, and

k2mn
(
m2 − n2

)
= (4) (5) (9) (7) (17) (73) .
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Solution 1. Choose k = 1, m = (9) (5) = 45, and n = (7) (4) = 28. Then, m and n have
the required properties and additionally (2) is satisfied because

m2 − n2 = 452 − 282 = 1241 = (17) (73) .

The resulting values of a, b, and c are

a = (1)
(
452 − 282

)
= 1241,

b = (2) (1) (45) (28) = 2520,

and

c = (1)
(
452 + 282

)
= 2809.

As a check, we note that

a2 + b2 = 12412 + 25202 = 7, 890, 481 = 28092 = c2

and

Area (4) =
1

2
ab

=
1

2
(1241) (2520)

= 1, 563, 660

= (4) (5) (9) (7) (17) (73) .

Solution 2. Choose k = 1, m = (4) (17) = 68, and n = 5. Then, once again, m and n
have the required properties and additionally, (2) is satisfied because

m2 − n2 = 682 − 52 = 4599 = (9) (7) (73) .

The resulting values of a, b, and c are

a = (1)
(
682 − 52

)
= 4599,

b = (2) (1) (68) (5) = 680,

and

c = (1)
(
682 + 52

)
= 4649.

Then,
a2 + b2 = 45992 + 6802 = 21, 613, 201 = 46492 = c2

and

Area (4) =
1

2
ab

=
1

2
(4599) (680)

= 1, 563, 660

= (4) (5) (9) (7) (17) (73) .
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Remark: In both solutions, gcd (a, b) = 1. Hence, both solutions give primitive Pythagorean
triangles for this case.

Solution 2 by Ioannis D. Sfikas, National and Kapodistrian University of
Athens, Greece

One of the problems in Pythagorean triangles, which have engaged the attention of many
mathematicians throughout the centuries is to find two or more Pythagorean triangles
having equal areas (Beiler, 1966, p. 109).

In the work of Guy [2], he wondered how many primitive Pythagorean triangles can have
the same area. A triple of such, with generators (77, 38), (78, 55) and (138, 5) was found by
Charles L. Shedd in 1945. In 1986, Rathbun found three more: (1610, 869), (2002, 1817),
(2622, 143); (2035, 266), (3306, 61), (3422, 55) and (2201, 1166), (2438, 2035), (3565, 198). A
fifth triple, (7238, 2465), (9077, 1122), (10434, 731), was found independently on consecu-
tive days by Dan Hoey and Rathbun. Is there an infinity of triples? Are there quadruples?

For the question of the smallest number that is the area of n distinct Pythagorean trian-
gles, then 71831760 is area of 5 Pythagorean triangles: (2415, 59488, 59537),
(2640, 54418, 54482), (5070, 28336, 28786), (7280, 19734, 21034), (10010, 14352, 17498) [see 3].
Furthermore, 210 is the smallest area common to 2 primitive Pythagorean triangles [viz.
triples (20, 21, 29), (12, 35, 37)]; followed by 2730 [triples (60,91,109), (28,195,197)];
7980 [triples (95,168,193), (40,399,401)]; 71610 [triples (341, 420, 541), (132, 1085, 1093)];
[see 4].

Fermat used a simple method for obtaining two Pythagorean triangles with equal areas.
If a and b are the two legs and c the hypotenuse of a Pythagorean triangle, so that
a2 + b2 = c2, he used m = c2 and n = 2ab as the generators of a new Pythagorean
triangle with legs: m2−n2 = c4− 4a2, b2 = (a2− b2)2, and 2mn = 4c2ab and hypotenuse
m2 + n2 = c4 + 4a2b2. Its area is 2c2ab(c4 − 4a2b2) = 2c2ab(a2 − b2)2. This triangle has
the same area as the one obtained when the sides of triangle a, b, c are each multiplied by
2c(a2− b2). This is easily proved: The two legs of the magnified triangle are a ·2c(a2− b2)
and b · 2c(a2 − b2), and the area is 2c2ab(a2 − b2)2, the same as above (Beiler, 1966, pp.
126-127).

Taking a = 4, b = 3, c = 5, the generators become m = 25, n = 24, forming the triangle
49, 1200, and 1201. Multiplying 4, 3, and 5 by 2 · 4 · (42− 32) = 70, the magnified triangle
becomes 280, 210, and 350. The area of both of these triangles is 29400 (Beiler, 1966, p.
127).

If A = (N)(N + 1)(2N + 1)(2N − 1)(4N + 1)(4N2 + 2N + 1), where A is the area of the
Pythagorean triangle, then for N = 4 : A = 1563660 = 22 · 32 · 5 · 7 · 17 · 73. If a and b are

the two legs of the Pythagorean triangle, then:
ab

2
= A, or:

ab = 3127320 = 23 · 32 · 5 · 7 · 17 · 73. (1)

If d denotes the divisors of 3127320, then:
d = (3 + 1)(2 + 1)(1 + 1)(1 + 1)(1 + 1)(1 + 1) = 192.

The 192 divisors are presented below:
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1 2 3 4 5 6 7 8 9 10

12 14 15 17 18 20 21 24 28 30

34 35 36 40 42 45 51 56 60 63

68 70 72 73 84 85 90 102 105 119

120 126 136 140 146 153 168 170 180 204

210 219 238 252 255 280 292 306 315 340

357 360 365 408 420 438 476 504 510 511

584 595 612 630 657 680 714 730 765 840

876 952 1020 1022 1071 1095 1190 1224 1241 1260

1314 1428 1460 1530 1533 1752 1785 2049 2044 2142

2190 2389 2482 2520 2555 2628 2856 2920 3060 3066

3285 3570 3723 4088 4284 4380 4599 4760 4964 5110

5256 5355 6120 6132 6205 6570 7140 7446 7665 8568

8687 8760 9198 9928 10220 10710 11169 12264 12410 13140

14280 14892 15330 17374 18396 18635 20440 211420 22338 22995

24820 26061 26280 29784 30660 34748 36792 37230 42840 43435

44676 45990 49640 52122 55845 61320 69496 74460 78183 86870

89352 91980 104244 111690 130305 148920 156366 173740 183960 208488

223380 260610 312732 347480 390915 446760 521220 625464 781830 1042440

1563660 3127320

Since a and b are integers, then they have to satisfy equation (1) and the Pythagorean theorem
a2 + b2 = c2, that means the sum of the squares of a and b must be a perfect square. By some
calculations, we may find:

(a, b, c) = (680, 4599, 4649) and (a, b, c) = (1241, 2520, 2809).

[1] Beiler, Albert H. (1966). “The Eternal Triangle,” Ch. 14. In Recreations in the Theory of
Numbers: The Queen of Mathematics Entertains. New York: Dover.
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[2] Guy, Richard K. (1994). Unsolved problems in intuitive mathematics. New York: Springer-
Verlag, pp. 188-190.

[3] http://oeis.org/A055193

[4 ] http://oeis.org/A093536

[5] https://math.stackexchange.com/questions/1272064/quadruple-of-pythagorean-triples-with-
same-area/12742241274224
[6] https://math.stackexchange.com/questions/2433492/is-there-a-general-formula-for-three-pythagorean-
triangles-which-share-an-area [7] https://math.stackexchange.com/questions/2448242/is-there-
a-formula-for-this-specific-pattern-of-pythagorean-triangles-sharing-an [8] Rathbun, Randall L.
(1994). Table of Equal Area Pythagorean Triangles, from Co-primitive sets of Integer Generator
Pairs. Mathematics of Computation, 62 (205):440.

Solution 3 by Michel Bataille, Rouen, France

If m,n are positive integers with m > n, then (2mn)2 + (m2 − n2)2 = (m2 + n2)2, hence
2mn, m2−n2, m2+n2 are the sides of a Pythagorean triangle whose area is 1

2(2mn)(m2−n2) =
mn(m− n)(m+ n).
Let A = N(N + 1)(2N + 1)(2N − 1)(4N + 1)(4N2 + 2N + 1) where N ∈ N .
First, if we take m = N(4N+1) and n = N+1, it is readily checked that mn(m−n)(m+n) = A.
Therefore A is the area of the Pythagorean triangle with sides

2N(N + 1)(4N + 1), N2(4N + 1)2 − (N + 1)2, N2(4N + 1)2 + (N + 1)2.

Second, if we take m = (N + 1)(2N + 1) and n = N(2N − 1), then mn(m − n)(m + n) = A
again, hence A is the area of the Pythagorean triangle with sides

2N(N + 1)(4N2 − 1), (N + 1)2(2N + 1)2 −N2(2N − 1)2, (N + 1)2(2N + 1)2 +N2(2N − 1)2.

We remark that in both cases the first side is the only even side of the triangle; in addition,
each of these sides, namely 2N(N + 1)(4N + 1) and 2N(N + 1)(4N2 − 1), are distinct (since
4N + 1 = 4N2 − 1 rewrites as (2N − 1)2 = 3, which does not hold if N is an integer). Thus,
the two triangles found above are distinct.

In the case when N = 4, a simple calculation gives the sides of the two triangles: in the first
case, the sides are 680, 4599, 4649 and in the second case 2520, 1241, 2809.

Solution 4 by Albert Natian, Los Angeles Valley College, Valley Glen, CA

All Pythagorean Triplets are given by
(
a = 2xy, b = x2 − y2, c = x2 + y2

)
where x, y ∈ N and

where sides a and b are the legs of the right triangle and side c is the hypotenuse. The area of
a Pythagorean Triangle with legs a and b is given by A = xy (x+ y) (x− y). The two choices
for the two Pythagorean triangles are given by

Choice One


x = (N + 1) (2N + 1) = 2N2 + 3N + 1, y = N (2N − 1) = 2N2 −N

x+ y = 4N2 + 2N + 1, x− y = 4N + 1

a = 2 (N + 1) (2N + 1)N (2N − 1) , b =
(
4N2 + 2N + 1

)
(4N + 1)

 ,
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Choice Two


x = N (4N + 1) = 4N2 +N, y = N + 1

x+ y = 4N2 + 2N + 1, x− y = 4N2 − 1 = (2N − 1) (2N + 1)

a = 2N (4N + 1) (N + 1) , b =
(
4N2 + 2N + 1

)
(2N − 1) (2N + 1)

 .

For N = 4:
Choice One

{
a = 2520, b = 1241, c = 2809

}
,

Choice Two
{
a = 680, b = 4599, c = 4649

}
.

Solution 5 by Brian D. Beasley, Presbyterian College, Clinton, SC

For each positive integer N , let AN = N(N + 1)(2N + 1)(2N − 1)(4N + 1)(4N2 + 2N + 1) and
define a1, b1, a2, and b2 as follows:

a1 = 2N(N + 1)(2N + 1)(2N − 1) and b1 = (4N + 1)(4N2 + 2N + 1)

a2 = 2N(N + 1)(4N + 1) and b2 = (2N + 1)(2N − 1)(4N2 + 2N + 1)

Then straightforward algebraic calculations show that for i ∈ {1, 2}, we obtain (1/2)aibi = AN
and a2i + b2i = c2i , where

c1 = 8N4 + 8N3 + 14N2 + 6N + 1 and c2 = 16N4 + 8N3 + 2N2 + 2N + 1.

Hence both (a1, b1, c1) and (a2, b2, c2) are Pythagorean triangles with area AN . In particular,
when N = 4, the triangles are (2520, 1241, 2809) and (680, 4599, 4649).

Solution 6 by David Stone and John Hawkins, Georgia Southern University, States-
boro, GA

The two triangles are (680, 4599, 4649) and (1241, 2520, 2809)

Let P = N(N + 1)(2N + 1)(2N1)(4N + 1)(4N2 + 2N + 1). We seek legs a and b such that

P = area = 1/2ab, where a2 + b2 is a square. That is, ab = 2P .

So we can just test factorizations of 2P = ab, which satisfy the condition that a2 + b2 is an
integer.

First, with some help from Excel, we find the two triangles for N = 1, in which case P = 210 :
(a, b, c) = (12, 35, 37) and (a, b, c) = (20, 21, 29).

Then we find the two triangles for N = 2, in which case P = 17010 : (a, b, c) = (108, 315, 333)
and (a, b, c) = (180, 189, 261).

In each case, a and b have opposite parity, so we narrow the search somewhat. With N =
4, 2P = 2(1, 563, 660) = 2232 · 5 · 7 · 17 · 73. Knowing the prime factorization allows us to easily
count and find all 144 divisors, and it is easy to check them.

We present the two triangles for N = 1, 2, 3, 4, and 5 :

N P a1 b1 c1 a2 b2 c2
1 210 12 35 37 20 21 29
2 17, 010 108 315 333 180 189 261
3 234, 780 312 1, 505 1, 537 559 840 1, 009
4 1, 563, 660 680 4, 599 4, 649 1, 241 2, 520 2, 809
5 6, 923, 070 1, 260 10, 989 11, 061 2, 331 5, 940 6, 381
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Also solved by Brian Bradie, Christopher Newport University, Newport News,
VA; Ed Gray, Highland Beach, FL; Pat Costello, Eastern Kentucky University
Richmond, KY; Kee-Wai Lau, Hong Kong, China; David E. Manes, Oneonta, NY;
Albert Stadler, Herrliberg, Switzerland; Daniel Văcaru, Pitesti, Romania, and the
proposer.

• 5560: Proposed by Michael Brozinsky, Central Islip, NY

Square ABCD (in clockwise order) with all sides equal to x has point E as the midpoint of side
AB. The right triangle EBC is folded along segment EC so that what was previously corner
B is now at point B′ which is at a distance d from side AD. Find d and also the distance of B′

from AB.

Solution 1 by Michael N. Fried, Ben-Gurion University of the Negev, Beer-Sheva,
Israel

First, note that the area of the quadrilateral EBCB′ is exactly half the area of the square.
Therefore, the areas of the two trapezoids, AEB′F and FB′CD taken together are also equal
to half the area of the square. In other words:

l
x
2 + d

2
+ (x− l)d+ x

2
=
x2

2

From which, after multiplying and simplifying, we find:

d− l

2
= 0

Or,
l = 2d

This means the triangle AFB′ is similar to triangle CBE, so that AB′||EG. But because
quadrilateral B′EBC is a kite, EG ⊥ EC. Therefore AB′ ⊥ B′B, so that triangle BB′A is
also similar to triangle CBE. Hence, AB′ = x√

5
.
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But also, (AB′)2 = d2 + l2. So, since also l = 2d, we have x2

5 = d2 + 4d2 = 5d2, so that

d =
1

5
x

and

l =
2

5
x

Solution 2 by Michel Bataille, Rouen, France

Let θ = 6 BCE. Then tan θ = EB
BC = x/2

x = 1
2 and 6 B′CE = θ (since B′ is the reflection of B

in EC). Since E,B,C,B′ lie on the circle with diameter EC, we also have 6 EBB′ = θ. If G is
the orthogonal projection of B′ onto BC (see figure), we deduce that 6 BB′G = θ (since B′G
is parallel to EB).
Now, let H,K denote the orthogonal projections of B′ onto AD,AB, respectively, and let M
be the midpoint of BB′. Then,

cos θ =
BM

BE
=

2BM

x
=
BB′

x

and so

BB′ = x cos θ = x · 1√
1 + tan2 θ

=
2x√

5
.
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Since B′G = BB′ cos θ = 4x
5 , we readily obtain

d = B′H = x− 4x

5
=
x

5
, B′K = BG =

√
BB′2 −B′G2 =

√
4x2

5
− 16x2

25
=

2x

5
.

Solution 3 by David A. Huckaby, Angelo State University, San Angelo, TX

See the figure below, in which F is the point on AB such that B′F is the distance from B′ to
AB.

d
xB'

EA

D C

BF

Since EB = x
2 , 6 BEC = tan−1 2, so that 6 B′EC = tan−1 2. Since AE = x

2 and B′E = x
2 ,

triangle AEB′ is isoceles. Along with the fact that exterior angle 6 B′EB = 2 tan−1 2, this
implies that 6 EAB′ = 6 EB′A = tan−1 2.

By the Law of Sines,
AB′

sin (180◦ − 2 tan−1 2)
=

x
2

sin (tan−1 2)
.

Now sin
(
180◦ − 2 tan−1 2

)
= sin 180◦ · cos

(
2 tan−1 2

)
− cos 180◦ · sin

(
2 tan−1 2

)
= 0 + 2 ·

sin
(
tan−1 2

)
· cos

(
tan−1 2

)
= 2 · 2√

5
· 1√

5
= 4

5 .

So
AB′

4
5

=
x
2
2√
5

, whence AB′ = x√
5
.

So d = AB′ · cos
(
tan−1 2

)
= x√

5
· 1√

5
= 1

5x, and the distance of B′ from AB is B′F =

AB′ · sin
(
tan−1 2

)
= x√

5
· 2√

5
= 2

5x.

Solution 4 by David E. Manes, Oneonta, NY

Introduce the following coordinates: A(0, 0), B(0, x), C(x, x), D(x, 0) and E(0, x/2). Then
ABCD is a square in clockwise order such that all sides have length x and E is the midpoint
of AB. Moreover, denote the coordinates of point B′ by B′(a, b). Then the distance from B′ to
side AD is d = b and the value of a represents the distance from B′ to side AB. We will show
that d = b = (1/5)x and a = (2/5)x.

Since the right triangle EBC is folded along the segment EC, it follows that side EB′ = EB =
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x/2 and B′C = BC = x. Therefore,

EB′ =

√
(a− 0)2 +

(
b− x

2

)2
=
x

2
=⇒ a2 + b2 − bx+

x2

4
=
x2

4
=⇒ a2 = bx− b2

and
B′C =

√
(a− x)2 + (b− x)2 = x =⇒ a2 − 2ax+ x2 + b2 − 2bx+ x2 = x2.

Using the substitution a2 = bx−b2, this equation reduces to bx = x2−2ax. Therefore, b = x−2a
since x 6= 0. Then

a2 = bx− b2 = (x− 2a)x− (x− 2a)2 =⇒ 5a2 − 2ax = 0 =⇒ 5a− 2x = 0

since a 6= 0. Hence, a =
2

5
x so that b = x − 2a = x − 2

(
2x

5

)
=

1

5
x. Therefore, a =

2

5
x and

b =
1

5
x.

Solution 5 by Michael C. Faleski, Delta College, University Center, MI

For simplicity of considering the problem on a coordinate system, we are choosing C to be
located at the origin as in the figure.

From the right triangle formed by BCE, tan(θ) = 1
2 , and after folding over the segment CE, we

have point B
′

located at (x cos(2θ), x sin(2θ)) By the trig identity that tan(2θ) = tan(θ)+tan(θ)
1−tan(θ) tan(θ) ,

we find tan(2θ) =
1
2
+ 1

2

1− 1
2

1
2

= 4
3 This means that cos(2θ) = 3

5 and sin(2θ) = 4
5 . Hence, the point

B
′

is located at (35x,
4
5x).

This makes d, the distance of B
′

to AD, a length of x− 4
5x = 1

5x and the distance of B
′

to AB
equal to x− 3

5x = 2
5x

Also solved by Brian D. Beasley, Presbyterian College, Clinton, SC; Brian Bradie,
Christopher Newport University, Newport News,VA; Ed Gray, Highland Beach,
FL; Kee-Wai Lau, Hong Kong, China; Daniel Văcaru, Pitesti, Romania; Albert
Stadler, Herrliberg, Switzerland; Seán M. Stewart, Bomaderry, NSW, Australia;
David Stone and John Hawkins, Georgia Souther University, Statesboro, GA, and
the proposer.

• 5561: Proposed by Pedro Pantoja, Natal/RN, Brazil

Calculate the exact value of:

cos
5π

28
+ cos

13π

28
− cos

17π

28
.
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Solution 1 by Brian Bradie, Christopher Newport News, VA

We start with some preliminary results.

• First,

cos
π

7
+ cos

3π

7
+ cos

5π

7
= Re

(
eiπ/7 + e3iπ/7 + e5iπ/7

)
= Re

(
eiπ/7 + 1

1− e2iπ/7

)

= −Re

(
1 + e−iπ/7

2i sinπ/7

)

= −Im

(
1 + e−iπ/7

2 sinπ/7

)
=

1

2
.

• Second,

cos
2π

7
+ cos

4π

7
+ cos

6π

7
= −

(
cos

5π

7
+ cos

3π

7
+ cos

π

7

)
= −1

2
.

• Third, (
cos

π

14
+ cos

3π

14
− cos

5π

14

)2

= cos2
π

14
+ cos2

3π

14
+ cos2

5π

14
+ 2 cos

π

14
cos

3π

14

−2 cos
π

14
cos

5π

14
− 2 cos

3π

14
cos

5π

14

=
3

2
+

1

2

(
cos

π

7
+ cos

3π

7
+ cos

5π

7

)
+ cos

2π

7
+ cos

π

7

− cos
3π

7
− cos

2π

7
− cos

4π

7
− cos

π

7

=
3

2
+

1

2
· 1

2
=

7

4
.

Because

cos
π

14
> 0 and cos

3π

14
> cos

5π

14
,

it follows that

cos
π

14
+ cos

3π

14
− cos

5π

14
> 0

Therefore,

cos
π

14
+ cos

3π

14
− cos

5π

14
=

√
7

2
.

12



We now return to the original question. We find(
cos

5π

28
+ cos

13π

28
− cos

17π

28

)2

=

(
cos

5π

28
+ cos

13π

28
+ cos

11π

28

)2

= cos2
5π

28
+ cos2

13π

28
+ cos2

11π

28
+ 2 cos

5π

28
cos

13π

28

+2 cos
5π

28
cos

11π

28
+ 2 cos

13π

28
cos

11π

28

=
3

2
+

1

2

(
cos

5π

14
+ cos

11π

14
+ cos

13π

14

)
+ cos

4π

7
+ cos

3π

14

+ cos
2π

7
+ cos

9π

14
+ cos

6π

7
+ cos

π

14

=
3

2
+

1

2

(
cos

π

14
+ cos

3π

14
− cos

5π

14

)
+ cos

2π

7
+ cos

4π

7
+ cos

6π

7

=
3

2
+

1

2
·
√

7

2
− 1

2
= 1 +

√
7

4

=
8 + 2

√
7

8
=

(
1 +
√

7

2
√

2

)2

.

Because

cos
5π

28
> 0 cos

13π

28
> 0, and cos

17π

28
< 0,

it follows that

cos
5π

28
+ cos

13π

28
− cos

17π

28
> 0.

Therefore,

cos
5π

28
+ cos

13π

28
− cos

17π

28
=

1 +
√

7

2
√

2
.

Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain

cos
5π

28
+ cos

13π

28
− cos

17π

28
= cos

5π

28
+ sin

π

2
− 13π

28
+ cos

(
π − 17π

28

)

= cos

(
3π

7
− π

4

)
+ sin

(
2π

7
− π

4

)
+ cos

π

7
+
π

4
= cos

3π

7
cos

π

4
+ sin

3π

7
sin

π

4

= sin
2π

7
cos

π

4
− cos

2π

7
sin

π

4
+ cos

π

7
cos

π

4
− sin

π

7
sin

π

4

=

√
2

2

(
cos

π

7
− cos

2π

7
+ cos

3π

7
− sin

π

7
+ sin

2π

7
+ sin

3π

7

)
.

13



The complex roots of the polynomial z7 + 1 are the seventh roots of −1, that is, ei
π+2kπ

7 , k ∈
N, 0 ≤ k ≤ 6 or equivalently,

cos
π

7
+ i sin

π

7
, cos

3π

7
+ i sin

3π

7
, − cos

2π

7
+ i sin

2π

7
, −1,

− cos
2π

7
− i sin

2π

7
, cos

3π

7
− i sin

3π

7
, and cos

π

7
− i sin

π

7
.

By the first formula of Cardano-Viéte, the sum of these seven seven roots is equal to the opposite
of the coefficient of z6 of the polynomial z7+1, which is 0, so in particular (in fact, equivalently)
the real part of the sum is 0 , that is,

cos
π

7
+ cos

3π

7
− cos

2π

7
− 1− cos

2π

7
+ cos

3π

7
+ cos

π

7
= 0

or equivalently

cos
π

7
− cos

2π

7
+ cos

3π

7
=

1

2
.

Now, since(
− sin

π

7
+ sin

2π

7
+ sin

3π

7

)2

= sin2 π

7
+ sin2 2π

7
+ sin2 3π

7
− 2 sin

π

7
sin

2π

7
+

+2 sin
2π

7
sin

3π

7
− 2 sin

3π

7
sin

π

7
=

1

2

(
1− cos

2π

7

)
+

1

2

(
1− cos

4π

7

)
+

1

2

(
1− cos

6π

7

)
+

+ cos

(
π

7
+

2π

7

)
−cos

(
π

7
− 2π

7

)
+cos

(
2π

7
− 3π

7

)
−cos

(
2π

7
+

3π

7

)
−cos

(
3π

7
− π

7

)
+cos

(
3π

7
+
π

7

)
=

3

2
+

1

2

(
− cos

2π

7
+ cos

3π

7
+ cos

π

7

)
+cos

3π

7
−cos

π

7
+cos

π

7
+cos

2π

7
−cos

2π

7
−cos

3π

7
=

3

2
+

1

2

1

2
=

7

4
.

Then

− sin
π

7
+ sin

2π

7
+ sin

3π

7
=

√
7

2
.

So the required value is

cos
5π

28
+ cos

13π

28
− cos

17π

28
=

√
2

2

(
cos

π

7
− cos

2π

7
+ cos

3π

7
− sin

π

7
+ sin

2π

7
+ sin

3π

7

)

=

√
2

2

(
1

2
+

√
7

2

)
=

1

4

(√
2 +
√

14
)
.

Equivalently,

√
1
16

(√
2 +
√

14
)2

=
√

1
16

(
16 + 2

√
28
)

=
√

1
4

(
4 +
√

7
)

= 1
2

(√
4 +
√

7
)

.

Solution 3 by Kee-Wai Lau, Hong Kong, China

We show that

cos
5π

28
+ cos

13π

28
− cos

17π

28
=

√
2 +
√

14

4
. (1)

Let a = 2 cos
5π

28
+ 2 cos

11π

28
+ 2 cos

13π

28
+ cos

3π

4
, so that (1) will follow from

a =

√
14

2
(2)

14



Since a > cos
5π

28
+ cos

3π

4
= 2 cos

2π

7
cos

13π

28
> 0, so (2) will follow from

a2 =
13

2
− 6

(
cos

π

7
− cos

2π

7
+ cos

3π

7

)
(3)

and the well-known result that cos
π

7
− cos

2π

7
+ cos

3π

7
=

1

2
. To prove (3), we first note that

a2 is of the form
∑
ci cosαi cosβi, where ci are constants.

By using the formulas 2 cosx cos y = cos(x− y) + cos(x+ y) and cos(π ± x) = − cosx, we then

transform
∑
ci cosαi cosβi to the form

∑
kj cos θj , where kj are constants and θj ∈

[π
2

]
. In

this way we arrive at (3), and this completes the solution.

Solution 4 by Seán M. Stewart, Bomaderry, NSW, Australia

The exact value of the expression

cos
5π

28
+ cos

13π

28
− cos

17π

28
,

will be shown to be equal to

√
4 +
√

7

2
.

Our analysis will be greatly aided by the observation

cos
π

7
− cos

2π

7
+ cos

3π

7
=

1

2
.

In proving this result, since 2 sin π
7 6= 0, then

cos
π

7
− cos

2π

7
+ cos

3π

7
=

2 sin
π

7
cos

π

7
− 2 sin

π

7
cos

2π

7
+ 2 sin

π

7
cos

3π

7

2 sin
π

7

.

Making use of the product to sum identity 2 sin θ cosϕ = sin(θ+ϕ)+sin(θ−ϕ) and the reduction
formula sin(π − θ) = sin θ allows us to rewrite the above result as

cos
π

7
− cos

2π

7
+ cos

3π

7
=

sin

(
2π

7

)
− sin

(
3π

7

)
− sin

(
−π

7

)
+ sin

(
4π

7

)
+ sin

(
−2π

7

)
2 sin

π

7

=
sin

2π

7
− sin

3π

7
+ sin

π

7
+ sin

3π

7
− sin

2π

7

2 sin
π

7

=
sin

π

7

2 sin
π

7

=
1

2
,

as required.
To find the exact value of the desired expression, let

S = cos
5π

28
+ cos

13π

28
− cos

17π

28
.

In finding its value, the following results will be used when needed:

15



(i) the product to sum identity of 2 cos θ cosϕ = cos(θ − ϕ) + cos(θ + ϕ),

(ii) the double angle formula of 2 cos2 θ = 1 + cos 2θ,

(iii) the reduction formula of cos(π − θ) = − cos θ, and

(iv) the half period shift formula of cos(θ + π) = − cos θ.

Squaring S we have

S2 =

(
cos

5π

28
+ cos

13π

28
− cos

17π

28

)2

= cos2
5π

28
+ cos2

13π

28
+ cos2

17π

28

+ 2 cos
5π

28
cos

13π

28
− 2 cos

5π

28
cos

17π

28
− 2 cos

13π

28
cos

17π

28

=
1

2

(
1 + cos

10π

28

)
+

1

2

(
1 + cos

26π

28

)
+

1

2

(
1 + cos

34π

28

)
+ cos

8π

28
+ cos

18π

28
− cos

12π

28
− cos

22π

28
− cos

4π

28
− cos

30π

28

=
3

2
+

1

2
cos

5π

14
+

1

2
cos

13π

14
+

1

2
cos

17π

14

+ cos
2π

7
+ cos

9π

14
− cos

3π

7
− cos

11π

14
− cos

π

7
− cos

15π

14

=
3

2
+

1

2
cos

5π

14
+

1

2
cos

13π

14
− 1

2
cos

3π

14

+ cos
2π

7
+ cos

9π

14
− cos

3π

7
− cos

11π

14
− cos

π

7
+ cos

π

14

=
3

2
−
(

cos
π

7
− cos

2π

7
+ cos

3π

7

)
+

1

2

(
cos

π

14
+ cos

3π

14
− cos

5π

14

)
.

But as cos
π

7
− cos

2π

7
+ cos

3π

7
=

1

2
, we have

S2 = 1 +
1

2

(
cos

π

14
+ cos

3π

14
− cos

5π

14

)
,

or

2
(
S2 − 1

)
= cos

π

14
+ cos

3π

14
− cos

5π

14
.

16



Squaring again gives

4
(
S2 − 1

)2
=

(
cos

π

14
+ cos

3π

14
− cos

5π

14

)2

= cos2
π

14
+ cos2

3π

14
+ cos2

5π

14

+ 2 cos
3π

14
cos

π

14
− 2 cos

5π

14
cos

π

14
− 2 cos

5π

14
cos

3π

14

=
1

2

(
1 + cos

2π

14

)
+

1

2

(
1 + cos

6π

14

)
+

1

2

(
1 + cos

10π

14

)
+ cos

4π

14
+ cos

2π

14
− cos

6π

14
− cos

4π

14
− cos

8π

14
− cos

2π

14

=
3

2
+

1

2
cos

π

7
+

1

2
cos

3π

7
+

1

2
cos

5π

7

+ cos
2π

7
+ cos

π

7
− cos

3π

7
− cos

2π

7
− cos

4π

7
− cos

π

7

=
3

2
+

1

2
cos

π

7
+

1

2
cos

3π

7
− 1

2
cos

2π

7

+ cos
2π

7
+ cos

π

7
− cos

3π

7
− cos

2π

7
+ cos

3π

7
− cos

π

7

=
3

2
+

1

2

(
cos

π

7
− cos

2π

7
+ cos

3π

7

)
=

3

2
+

1

2
· 1

2
=

7

4
.

We are therefore left with the biquadratic equation of

16S4 − 32S2 + 9 = 0.

Solving gives

S = ±
√

4±
√

7

2
.

In selecting the correct root to the biquadratic equation, noting that

cos
5π

28
+ cos

13π

28
− cos

17π

28
= cos

5π

28
+ cos

11π

28
+ cos

13π

28
> 0,

as cosx is a monotonically decreasing function on the interval
(
0, π2

)
, we see that

cos
5π

28
> cos

π

3
=

1

2
,

and

− cos
17π

28
= cos

11π

28
> cos

2π

5
=

√
5− 1

4
.

Thus

cos
5π

28
− cos

17π

28
>

√
5 + 1

4
>

√
4−
√

7

2
.

One therefore has

cos
5π

28
+ cos

13π

28
− cos

17π

28
=

√
4 +
√

7

2
,

17



as announced.

Remark

It can in fact be shown that the second positive root of

√
4−
√

7

2
to the biquadratic equation

for S corresponds to the value of

cos
π

28
− cos

3π

28
+ cos

9π

28
.

Solution 5 by Julio Cesar Mohnsam, POMAT-IFSul Campus Pelotas-RS, Brazil

Note that: cos(π − x) = cosx, like this:

cos
5π

28
= − cos

23π

28
= − cos

(
π

4
+

4π

7

)
− cos

17π

28
= cos

11π

28
= cos

(
π

4
+

4π

7

)
We can also write:

cos
13π

28
= cos

(
−13π

28

)
= cos

(
π

4
− 5π

7

)
like this:

cos
5π

28
+ cos

13π

28
− cos

137π

28
= − cos

(
π

4
+

4π

7

)
+ cos

(
π

4
− 5π

7

)
+ cos

(
π

4
+

4π

7

)

= − cos
π

4
cos

4π

7
+ sin

π

4
sin

4π

7
+ cos

π

4
cos

5π

7
+ sin

π

4
sin

5π

7
+ cos

π

4
cos

π

7
− sin

π

4
sin

π

7

cos
π

4

(
cos

π

7
− cos

4π

7
+ cos

5π

7

)
+ sin

π

4

(
− sin

π

7
+ sin

4π

7
+ sin

5π

7

)
.

Now note that: sin(π − x) = sinx, cos(π − x) = − cosx and sin(−x) = − sinx, we have

− cos
4x

7
− = cos

3π

7
, − sin

π

7
= − sin

−π
7

= − sin
8π

7
and sin

5π

7
= sin

2π

7
.

Rewriting we have;

cos
5π

28
+cos

13π

28
−cos

17π

28
= cos

π

4

(
cos

π

7
+ cos

3π

7
+ cos

5π

7

)
︸ ︷︷ ︸

1/2

+sin
π

4

(
sin

2π

7
+ sin

4π

7
+ sin

8π

7

)
︸ ︷︷ ︸√

7/2

=

√
2

2

1

2
+

√
2

2

√
7

2
=

√
2

4

(
1 +
√

7
)

Solution 6 by Brian D. Beasley, Presbyterian College, Clinton, SC

We show that the given expression equals (
√

2 +
√

14)/4.

Let a = cos(5π/28), b = cos(13π/28), and c = cos(17π/28). Using the triple-angle formula for
cosine, we have b = − cos(15π/28) = −4a3 + 3a and c = − cos(45π/28) = 4b3 − 3b. Then
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a+ b− c = a(256a8 − 576a6 + 432a4 − 124a2 + 13). (∗)
Using the multiple-angle formula for cos(14θ) with θ = 5π/28, we obtain (2a2 − 1)f(a) = 0,
where

f(x) = 4096x12 − 12288x10 + 13568x8 − 6656x6 + 1376x4 − 96x2 + 1.

Since a2 6= 1/2, we conclude that f(a) = 0.

Next, we let g(x) = 16x4−32x2+9 and show that g(a+b−c) = 0. Using (∗) and a considerable
amount of algebra, we note that g(a+ b− c) = f(a)h(a) = 0, where h(x) =

∑12
k=0 a2kx

2k with
integer coefficients a2k (see the Addendum for the values of these coefficients).

Finally, we observe that a+ b− c > a > cos(π/4) =
√

2/2. Since the only zero of g(x) which is
greater than

√
2/2 is (

√
2 +
√

14)/4, this completes the proof.

Addendum. We calculate the following values for the coefficients of h(x):

a24 = 16, 777, 216; a22 = −100, 663, 296; a20 = 265, 289, 728; a18 = −404, 750, 336;

a16 = 397, 148, 160; a14 = −263, 651, 328; a12 = 121, 376, 768; a10 = −39, 010, 304;

a8 = 8, 643, 328; a6 = −1, 266, 944; a4 = 111, 536; a2 = −4544; a0 = 9

Also solved by Hatef I. Arshagi, Guilford Technical Community College, Jamestown,
NC; Michel Bataille, Rouen, France; Ioannis D. Sfikas, National and Kapodis-
trian University of Athens, Greece; Albert Stadler, Herrliberg, Switzerland; Daniel
Văcaru, Pitesti, Romania, and the proposer.

• 5562: Proposed by Daniel Sitaru, National Economic College “Theodor Costescu,” Mehedinti,
Romania

Prove: If a, b, c ≥ 1, then

eab + ebc + eca > 3 +
c

a
+
b

c
+
a

b
.

Solution 1 by Henry Ricardo, Westchester Area Math Circle, NY.

The well-known inequality ex > 1 + x for x ≥ 1 yields

eab + ebc + eca > (1 + ab) + (1 + bc) + (1 + ca) = 3 + ab+ bc+ ca.

We also note that since a, b, c ≥ 1, we have a ≥ 1/c, b ≥ 1/a , and c ≥ 1/b, so that ab ≥
b/c, bc ≥ c/a, and ca ≥ a/b. Thus

eab + ebc + eca > 3 + ab+ bc+ ca ≥ 3 +
c

a
+

b

c
+

a

b
.

Solution 2 by Ed Gray, Highland Beach, FL

1. eab > 1 + ab

2. ebc > 1 + bc

3. eca > 1 + ca

4. eab + ebc + eca > 3 + ab+ bc+ ca
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5. Claim that a, b, c ≥ 1 implies that ab >
a

b
or ab2 > a because b ≥ 1; same holds for the

others which proves the conjecture.

Solution 3 by Albert Natian, Los Angeles Valley College, Valley Glen, CA

eab + ebc + eca =

[
1 + ab+

∞∑
k=2

(ab)k

k!

]
+

[
1 + bc+

∞∑
k=2

(bc)k

k!

]
+

[
1 + ca+

∞∑
k=2

(ca)k

k!

]

> [1 + ab] + [1 + bc] + [1 + ca]

= 3 +

[
ab

(
1− 1

b2

)
+
a

b

]
+

[
bc

(
1− 1

c2

)
+
b

c

]
+

[
ca

(
1− 1

c2

)
+
c

a

]

≥ 3 +
c

a
+
b

c
+
a

b
.

Note: It’s interesting that the inequality stands even when a, b, c ≤ −1.

Solution 4 by Moti Levy, Rehovot, Israel

Since ex is convex function, then (Jensen’s inequality)

eab + ebc + eca

3
≥ e

ab+bc+ca
3 . (1)

Since ex ≥ 1 + x for x ≥ 0, then

3e
ab+bc+ca

3 ≥ 3

(
1 +

ab+ bc+ ca

3

)
= 3 + ab+ bc+ ca (2)

Since a, b, c ≥ 1
a2b2c+ ab2c2 + a2bc2 ≥ a2c+ ab2 + bc2

or
abc (ab+ bc+ ca) ≥ a2c+ ab2 + bc2.

Dividing both sides of the inequality by abc results in

ab+ bc+ ca ≥ c

a
+
b

c
+
a

b
. (3)

The desired inequality follows from (1), (2) and (3).

Solution 5 by Daniel Văcaru, Pitesti, Romania

We know that ex ≥ x+ 1,∀x ≥ 0, or to be accurateex > x+ 1, ∀x ≥ 1. It follows eab > 1 +ab ≥
1 +

a

b
→ eab > 1 +

a

b
(1). In the same manner we have ebc > 1 +

b

c
(2) and eca > 1 +

c

a
(3).

Summing, we obtain

eab + ebc + eca > 3 +
c

a
+
b

c
+
a

b
,

as desired.
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Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo State
University, San Angelo, TX; Brian Bradie, Christopher Newport News, VA; Michel
Bataille, Rouen, France; Michael Brozinsky, Central Islip, NY; Tran Hong, Ben
Trey University, Ben Tre, Vietnam; Sanong Huayrerai, Nathom Pathom College,
Thailand; Kee-Wai Lau, Hong Kong, China; Ravi Prakash, New Delhi Univer-
sity, New Delhi,India; Ioannis D. Sfikas, National and Kapodistrian University of
Athens, Greece; Albert Stadler, Herrliberg, Switzerland; Seán M. Stewart, Bo-
maderry, NSW, Australia; David Stone and John Hawkins, Georgia Southern Uni-
versity, Statesboro, GA; and the proposer.

• 5563: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Without the aid of a computer, find the value of

+∞∑
n=1

15

25n2 + 45n− 36
.

Solution 1 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo State
University, San Angelo, TX

Since
25n2 + 45n− 36 = (5n− 3) (5n+ 12) ,

a partial fraction expansion yields

15

25n2 + 45n− 36
=

1

5n− 3
− 1

5n+ 12

for all n ≥ 1. Then, for m ≥ 4, let i = n− 3 in one of the following sums to obtain
m∑
n=1

15

25n2 + 45n− 36
=

m∑
n=1

1

5n− 3
−

m∑
n=1

1

5n+ 12

=
1

2
+

1

7
+

1

12
+

m∑
n=4

1

5n− 3
−

m∑
n=1

1

5n+ 12

=
61

84
+
m−3∑
i=1

1

5i+ 12
−

m∑
n=1

1

5n+ 12

=
61

84
+
m−3∑
n=1

1

5n+ 12
−

m∑
n=1

1

5n+ 12

=
61

84
− 1

5 (m− 2) + 12
− 1

5 (m− 1) + 12
− 1

5m+ 12

=
61

84
− 1

5m+ 2
− 1

5m+ 7
− 1

5m+ 12
.

As a result,
∞∑
n=1

15

25n2 + 45n− 36
= lim

m→∞

m∑
n=1

15

25n2 + 45n− 36

= lim
m→∞

[
61

84
− 1

5m+ 2
− 1

5m+ 7
− 1

5m+ 12

]
=

61

84
.
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Solution 2 by Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Spain

Since
15

25n2 + 45n− 36
=

1

5n− 3
− 1

5n+ 12
, then

k∑
n=1

15

25n2 + 45n− 36
=

k∑
n=1

(
1

5k − 3
+

1

5k + 12

)
=

1

2
− 1

17
+

1

7
− 1

22
+

1

12
− 1

27
+

1

17
− 1

32
+

1

22
− 1

37
+

1

27
− 1

42
+

1

32
− 1

47
+

1

37
− 1

52
+

· · ·
1

5k − 18
− 1

5k − 3
+

1

5k − 13
− 1

5n+ 2
+

1

5k − 8
− 1

5k + 7
+

1

5k − 3
− 1

5k + 12

=
1

2
+

1

7
+

1

12
− 1

5n+ 2
− 1

5k + 7
− 1

5k + 12

=
61

84
− 1

5n+ 2
− 1

5k + 7
− 1

5k + 12
.

Therefore, the proposed sum is

∞∑
n=1

15

25n2 + 45n− 36
= lim

k→∞

(
61

84
− 1

5n+ 2
− 1

5k + 7
− 1

5k + 12

)
=

61

84
.

Also solved by Hatef I. Arshagi, Guilford Technical Community College, Jamestown,
NC; Michel Bataille, Rouen, France; Brian D. Beasley, Presbyterian College, Clin-
ton, SC; Narendra Bhandari (two solutions), Bajura National College, Nepal,
India; Brian Bradie, Christopher Newport New University, Newport News,VA;
Bruno Salgueiro Fanego, Viveiro, Spain; Michael C. Faleski, University Center,
MI; Michael N. Fried, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Ed
Gray, Highland Beach, FL; Kee-Wai Lau, Hong Kong, China; Moti Levy, Rehovot,
Israel; Alexis Llanos, Catolica Colegio, Lima, Peru; David E. Manes, Oneonta,
NY; Henry Ricardo, Westchester Area Math Circle NY; Ioannis D. Sfikas, Na-
tional and Kapodistrian University of Athens, Greece; Albert Stadler, Herrliberg,
Switzerland; Seán M. Stewart, Bomaderry, NSW, Australia; David Stone and John
Hawkins, Georgia Southern University, Statesboro, GA; Daniel Văcaru, Pitesti,
Romania, and the proposer.

• 5564: Proposed by Ovidiu Furdui and Alina Sîntămărian, Technical University of Cluj-Napoca,
Cluj-Napoca, Romania

Let a > 0 and let f : [0, a]→ < be a Riemann integrable function. Calculate

lim
n→∞

∫ a

0

f(x)

1 + nxn
dx.
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Solution 1 by Brian Bradie, Christopher Newport New University, Newport News,VA

For every positive integer n, let the function gn : [0,∞)→ R be defined by

gn(x) =
1

1 + nxn
.

Then

lim
n→∞

gn(x) =

{
1, 0 ≤ x < 1
0, x ≥ 1

.

On every interval of the form [0, r] with 0 < r < 1, convergence is uniform. Convergence is also
uniform on [1,∞). We now consider three cases.

– 0 < a < 1: On the interval [0, a], gn → 1 uniformly, so

lim
n→∞

∫ a

0

f(x)

1 + nxn
dx =

∫ a

0
f(x) lim

n→∞
gn(x) dx =

∫ a

0
f(x) dx.

– a = 1: Write ∫ 1

0

f(x)

1 + nxn
dx =

∫ r

0

f(x)

1 + nxn
dx+

∫ 1

r

f(x)

1 + nxn
dx

for some 0 < r < 1. By the previous case,

lim
n→∞

∫ r

0

f(x)

1 + nxn
dx =

∫ r

0
f(x) dx.

For the integral over the interval [r, 1], note |gn(x)| ≤ 1 for all n and all x ≥ 0.
Moreover, because f is Riemann integrable, it is bounded over the closed interval
[r, 1]. Let M = sup |f(x)| over [r, 1]. Then, for all n,∣∣∣∣∫ 1

r

f(x)

1 + nxn
dx

∣∣∣∣ ≤ (1− r)M.

It then follows that

lim
r→1−

∫ 1

r

f(x)

1 + nxn
dx = 0,

and

lim
n→∞

∫ 1

0

f(x)

1 + nxn
dx = lim

r→1−

(∫ r

0
f(x) dx+

∫ 1

r

f(x)

1 + nxn
dx

)
=

∫ 1

0
f(x) dx.

– a > 1: Write ∫ a

0

f(x)

1 + nxn
dx =

∫ 1

0

f(x)

1 + nxn
dx+

∫ a

1

f(x)

1 + nxn
dx.

By the previous case,

lim
n→∞

∫ 1

0

f(x)

1 + nxn
dx =

∫ 1

0
f(x) dx.
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On the interval [1, a], gn → 0 uniformly, so

lim
n→∞

∫ a

1

f(x)

1 + nxn
dx =

∫ a

1
f(x) lim

n→∞
gn(x) dx = 0.

Therefore,

lim
n→∞

∫ a

0

f(x)

1 + nxn
dx =

∫ 1

0
f(x) dx.

Combining the results from the three cases, we see that

lim
n→∞

∫ a

0

f(x)

1 + nxn
dx =

∫ min(a,1)

0
f(x) dx.

Solution 2 by Michel Bataille, Rouen, France

Let gn(x) = f(x)
1+nxn . The function f , being Riemann integrable, is bounded. We call M a

positive real number such that |f(x)| ≤ M for all x ∈ [0, a]. Note that |gn(x)| ≤ M as well
(since 1 + nxn ≥ 1).
First, we consider the case a < 1. When x ∈ [0, a], we have lim

n→∞
nxn = 0 (since 0 ≤ x < 1)

and therefore lim
n→∞

gn(x) = f(x). In addition, |gn(x)| ≤ M and the constant function x 7→ M

is integrable on [0, a]. From Lebesgue’s dominated convergence theorem, we deduce

lim
n→∞

∫ a

0

f(x)

1 + nxn
dx =

∫ a

0
( lim
n→∞

gn(x)) dx =

∫ a

0
f(x) dx.

These equalities still hold if a = 1 since then lim
n→∞

gn(x) = f(x) except for x = 1, that is, almost

everywhere on [0, 1].
Now suppose that a > 1. For 1 < x ≤ a, we have lim

n→∞
nxn = ∞ and so lim

n→∞
gn(x) = 0. As

above, we obtain lim
n→∞

∫ 1
a gn(x) = 0 and so

lim
n→∞

∫ a

0

f(x)

1 + nxn
dx = lim

n→∞

∫ 1

0
gn(x) dx+ lim

n→∞

∫ 1

a
gn(x) dx =

∫ 1

0
f(x) dx+ 0 =

∫ 1

0
f(x) dx.

In conclusion,

lim
n→∞

∫ a

0

f(x)

1 + nxn
dx =

∫ min(a,1)

0
f(x) dx.

Solution 3 by Kee-Wai Lau, Hong Kong, China

We show that

lim
n→∞

∫ a

0

f(x)

1 + nxn
dx =



∫ a

0
f(x)dx, 0 < a < 1

∫ 1

0
f(x)dx, a ≥ 1.

Since lim
n→∞

nan = 0 for 0 < a < 1 and

0≤
∣∣∣∣∫ a

0

f(x)

1 + nxn
dx−

∫ a

0
f(x)dx

∣∣∣∣ = n

∣∣∣∣∫ a

0

f(x)xn

1 + nxn
dx

∣∣∣∣ ≤ n ∫ a

0

|f(x)|xn

1 + nxn
dx ≤ nan

∫ a

0
|f(x)| dx,

so lim
n→∞

∫ a

0

f(x)

1 + nxn
dx =

∫ a

0
f(x)dx in this case.
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Next , since lim
n→∞

n

(
1− 1√

n

)n
= 0, lim

n→∞

∫ 1

1− 1√
n

|f(x)| dx = 0 and

0 ≤
∣∣∣∣∫ 1

0

f(x)

1 + nxn
dx−

∫ 1

0
f(x)dx

∣∣∣∣ ≤ n

∫ 1

0

|f(x)|xn

1 + nxn
dx

≤ n

(
1− 1√

n

)n ∫ 1− 1√
n

0
|f(x)| dx+

∫ 1

1− 1√
n

|f(x)| dx,

so lim
n→∞

∫ 1

0

f(x)

1 + nxn
dx =

∫ 1

0
f(x)dx.

Finally, for a > 1, we have 0 ≤
∣∣∣∣∫ a

1

f(x)

1 + nxn
dx

∣∣∣∣ ≤ 1

n

∫ a

1
|f(x)| dx, which tends to zero as n

tends to infinity. Hence,

lim
n→∞

∫ a

0

f(x)

1 + nxn
dx = lim

n→∞

∫ a

0

f(x)

1 + nxn
dx+ lim

n→∞

∫ a

1

f(x)

1 + nxn
dx =

∫ 1

0
f(x)dx.

This completes the proof.

Solution 4 by Albert Natian, Los Angeles Valley College, Valley Glen, CA

First suppose 0 ≤ a < 1. Then
∣∣∣ nxn

1+nxn

∣∣∣2 ≤ n2a2n ∀x ∈ [0, a]. By Schwarz Inequality

0 ≤
∣∣∣∣∫ a

0
f(x) dx−

∫ a

0

f(x)

1 + nxn
dx

∣∣∣∣2 =

∣∣∣∣∫ a

0
f(x) · nxn

1 + nxn
dx

∣∣∣∣2

≤
∫ a

0
|f(x)|2 dx ·

∫ a

0

∣∣∣∣ nxn

1 + nxn

∣∣∣∣2 dx

≤
∫ a

0
|f(x)|2 dx ·

∫ a

0
n2a2n dx

≤ n2a2n+1

∫ a

0
|f(x)|2 dx.

Since limn→∞ n
2a2n+1 = 0, then (by Squeeze Theorem) limn→∞

∣∣∣∫ a0 f(x) dx−
∫ a
0

f(x)
1+nxn dx

∣∣∣2 =

0, and so limn→∞
∫ a
0

f(x)
1+nxn dx =

∫ a
0 f(x) dx.

Now ∀n ∈ N, ∀a ∈ (0, 1): we have
∣∣∣∫ 1
a

f(x)
1+nxn dx

∣∣∣ ≤ ∫ 1
a |f(x)| dx, and so

0 ≤
∣∣∣∣∫ 1

0

f(x)

1 + nxn
dx−

∫ 1

0
f(x) dx

∣∣∣∣ ≤ ∣∣∣∣∫ a

0

f(x)

1 + nxn
dx−

∫ a

0
f(x) dx

∣∣∣∣+ 2

∫ 1

a
|f(x)| dx.

So

0 ≤ lim
n→∞

∣∣∣∣∫ 1

0

f(x)

1 + nxn
dx−

∫ 1

0
f(x) dx

∣∣∣∣ ≤ 2

∫ 1

a
|f(x)| dx
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which implies limn→∞
∫ 1
0

f(x)
1+nxn dx =

∫ 1
0 f(x) dx since

∫ 1
a |f(x)| dx can get arbitrarily close

to 0 by sending a arbitrarily close to 1.

Now suppose a > 1. Since for all x in [1, a]: 0 < 1
1+nxn ≤

1
1+n , then

0 ≤
∣∣∣∣∫ a

1

f(x)

1 + nxn
dx

∣∣∣∣ ≤ ∫ a

1

∣∣∣∣ f(x)

1 + nxn

∣∣∣∣ dx ≤ 1

1 + n

∫ a

1
|f(x)| dx

wich implies limn→∞
∫ a
1

f(x)
1+nxn dx = 0, which in turn implies

lim
n→∞

∫ a

0

f(x)

1 + nxn
dx = lim

n→∞

∫ 1

0

f(x)

1 + nxn
dx+ lim

n→∞

∫ a

1

f(x)

1 + nxn
dx =

∫ 1

0
f(x) dx.

In final conclusion, for a > 0:

lim
n→∞

∫ a

0

f(x)

1 + nxn
dx =

∫ min{1,a}

0
f(x) dx.

Solution 5 by Moti Levy, Rehovot, Israel

Define the sequence of functions

fn (x) :=
|f (x)|

1 + nxn
.

For every 1 > ε > 0, there exists a number N such that for n > N , ε > 1
n+1 . Hence, for n > N

we have
x ≤ n

n+ 1
for all x ∈ [0, 1− ε) ,

which implies
1

1 + nxn
≤ 1

1 + (n+ 1)xn+1
.

Thus, for n > N,

|f (x)|
1 + nxn

≤ |f (x)|
1 + (n+ 1)xn+1

≤ |f (x)| , for all x ∈ [0, 1− ε) .

We have shown that the sequence of functions {fn (x)}∞n=1 is pointwise non-decreasing sequence
of non-negative functions fn : [0, 1− ε]→ [0,+∞], i.e., for every n ≥ N and every x ∈ [0, 1− ε) ,

0 ≤ fn (x) ≤ fn+1 (x) ≤ ∞.

The pointwise limit of the sequence {fn (x)} is |f (x)| for all x ∈ [0, 1− ε) .
If the function f (x) is Riemann integrable then it is Lebesgue integrable.
If a function is Riemann integrable on a bounded interval then it is Lebesgue measurable, so
we can apply the monotone convergence theorem for the Lebesgue integral.
By the monotone convergence theorem

lim
n→∞

∫
[0,1−ε)

|f (x)|
1 + nxn

dx =

∫
[0,1−ε)

|f (x)| dx. (1)

For x ≥ 1 and for all n ≥ 1,

|f (x)|
1 + nxn

≥ |f (x)|
1 + (n+ 1)xn+1

≥ 0, for all x ∈ [1,+∞]
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We have shown that the sequence of functions {fn (x)}∞n=1 is pointwise non-increasing sequence
of non-negative functions fn : [1,+∞]→ [0,+∞], i.e., for every n ≥ 1 and every x ∈ [1,+∞] ,

∞ ≥ fn (x) ≥ fn+1 (x) ≥ 0.

The pointwise limit of the sequence {fn (x)} is 0 for all x ∈ [1,+∞] .
By the monotone convergence theorem

lim
n→∞

∫
[1,+A]

|f (x)|
1 + nxn

dx =

∫
[1,+A]

0dx = 0 for any finite positive number A > a. (2)

We split the the interval [0, a] into two intervals I+ and I− such that I+ ∪ I− = [0, a] and

I+ : = {x ∈ [0, a]| f (x) ≥ 0} ,
I− = {x ∈ [0, a]| f (x) < 0} .

Clearly ∫ a

0

f (x)

1 + nxn
dx

=

∫
I+∩[0,1−ε)

|f (x)|
1 + nxn

dx−
∫
I−∩[0,1−ε)

|f (x)|
1 + nxn

dx

+

∫
I+∩[1,A)

|f (x)|
1 + nxn

dx−
∫
I−∩[1,A)

|f (x)|
1 + nxn

dx

+

∫
I+∩[1−ε,1)

|f (x)|
1 + nxn

dx−
∫
I−∩[1−ε,1)

|f (x)|
1 + nxn

dx. (3)

By (1) and and (2) it follows from (3) that

lim
n→∞

∫ a

0

f (x)

1 + nxn
dx =

∫
I+∩[0,1−ε)

|f (x)| dx−
∫
I−∩[0,1−ε)

|f (x)| dx

+

∫
I+∩[1−ε,1)

|f (x)|
1 + nxn

dx−
∫
I−∩[1−ε,1)

|f (x)|
1 + nxn

dx

=

∫
[0,a]∩[0,1−ε)

f (x) dx+

∫
[0,a]∩[1−ε,1)

f (x) dx.

∫
[0,a]∩[1−ε,1)

f (x) dx→ 0 as ε→ 0.

Since we may take ε to be arbitrarily small, we conclude that

lim
n→∞

∫ a

0

f (x)

1 + nxn
dx =

∫
[0,a]∩[0,1)

f (x) dx.

Solution 6 by Ulrich Abel, Technische Hochschule Mittelhessen, Germany

We show that ∫ a

0

f (x)

1 + nxn
dx =

∫ min{a,1}

0
f (x) dx. (*)

Case 1: If 0 < a < 1, we have ∫ a

0

f (x)

1 + nxn
dx =

∫ a

0
f (x) dx+R,

27



where

|R| =
∣∣∣∣∫ a

0

−nxn

1 + nxn
f (x) dx

∣∣∣∣ ≤ nan ∫ a

0
|f (x)| dx→ 0 (n→∞) .

Case 2: If a = 1, we have, for small ε > 0,∫ 1

0

f (x)

1 + nxn
dx =

∫ 1−ε

0

f (x)

1 + nxn
dx+

∫ 1

1−ε
f (x) dx+

∫ 1

1−ε

−nxn

1 + nxn
f (x) dx,

where, by Case 1, the first integral tends to
∫ 1−ε
0 f (x) dx and the modulus of the last integral

can be estimated by ε
∫ 1
0 |f (x)| dx.

Case 3: If a > 1, we have, for small ε > 0,∫ a

0

f (x)

1 + nxn
dx =

∫ 1

0

f (x)

1 + nxn
dx+

∫ 1+ε

1

f (x)

1 + nxn
dx+

∫ a

1+ε

f (x)

1 + nxn
dx.

By Case 2, the first integral tends to
∫ 1
0 f (x) dx. The modulus of the second integral can be

estimated by ε
∫ a
0 |f (x)| dx. Furthermore,∣∣∣∣∫ a

1+ε

f (x)

1 + nxn
dx

∣∣∣∣ ≤ 1

n (1 + ε)n

∫ a

0
|f (x)| dx→ 0 (n→∞) .

This completes the proof of Eq. (∗).

Solution 7 by Albert Stadler, Herrliberg, Switzerland

We claim that lim
n→∞

∫ b

0

f(x)

1 + nxn
dx =

∫ min(1,a)

0
f(x)dx.

By definition, any Riemann integrable functions is bounded. Therefore there is a positive
constant M such that |f(x)| ≤M for all x.

Suppose first that a ≤ 1. Then∣∣∣∣∣
∫ a

0

f(x)

1 + nxn
dx−

∫ min(1,a)

0
f(x)dx

∣∣∣∣∣ =

∣∣∣∣∫ a

0

nxn

1 + nxn
f(x)dx

∣∣∣∣ ≤M ∫ 1

0

nxn

1 + nxn
dx ≤

≤
∫ 1− 1√

n

0
nxndx+M

∫ 1

1− 1√
n

dx = M
n

n+ 1

(
1− 1√

n

)n+1

+
M√
n
→ 0,

as n→∞.

Suppose next that a > 1. Then∣∣∣∣∣
∫ a

0

fx

1 + nxn
dx−

∫ min (1,a)

0
f(x)dx

∣∣∣∣∣ ≤
∣∣∣∣∫ 1

0

f(x)

1 + nxn
dx−

∫ 1

0
f(x)dx

∣∣∣∣+

∣∣∣∣∫ a

0

f(x)

1 + nxn
dx

∣∣∣∣ ≤
≤ o(1) +

M(a− 1)

1 + n
→ 0,

as n→∞.

Also solved by the proposers.
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