Problems and Solutions Albert Natian, Section Editor
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This section of the SSMA Journal offers readers an opportunity to exchange interesting mathemat-
ical problems and solutions. Please send them to Prof. Albert Natian, Department of Mathematics,
Los Angeles Valley College, 5800 Fulton Avenue, Valley Glen, CA, 91401, USA. It’s highly prefer-
able that you send your contributions via email.

To propose problems, email them to: problems4ssma@gmail.com

To propose solutions, email them to: solutions4ssma@gmail.com

Please follow the instructions for submission of problems and solutions provided at the end of
this document. Your adherence to all submission requirements is of the greatest help in running
this Section successfully. Thank you!

Solutions to previously published problems can be seen at <www.ssma.org/publications>.
Solutions to the problems published in this issue should be submitted before August 15, 2022.

e 5691 Proposed by Mihaly Bencze, Brasov, Romania and Neculai Stanciu, Buzdu, Romania.

Solve for real numbers x > 1:
3%+ 5¢

2+2x+4x+10g7 (m

>=3W+Y.

® 5692 Proposed by Shivam Sharma, Delhi University, New Delhi, India.

Prove that
e 6D YO0 .
e | () (g 4 1) O R

e 5693 Proposed by Vasile Mircea Popa, Lucian Blaga University, Sibiu, Romania.

Calculate the integral:

© In x

————dx
0o X*+x2+1
e 5694 Proposed by Michel Bataille, Rouen, France.

n k
1 1
= Z k"H, where H, = Z —. Find real numbers
nm l
k=1

i=1

Given a positive integers m and n, let S ,,(n) =

A, and p,, such that
lim (S, (n) — A, Inn — w,) = 0.

n—0o0



e 5695 Proposed by Narendra Bhandari and Yogesh Joshi, Nepal.

Prove that

V2 xdx n r (i) — 8
ﬁ (1+x)4/(2—x)(x2 - 1) "2 (27)3/2I2 <i>

o]

where I'(z) = J x*~'e™*dx is Gamma function where the real part R (z) of the complex number z
0
is positive.

® 5696 Proposed by Mohsen Soltanifar, University of Toronto, Toronto, Canada.

The sequence (A,),~, of subsets of the set R of real numbers is said to be convergent if and only if

the two sets o v
B = (1An and By:=|) L An

n=1m=n n=1m=n
are identical. Otherwise, we say the sequence is divergent. For each of the following cases, con-
struct as complicated and fanciful a divergent sequence (A,);-, as you can muster while using no
more than an aggregate of 42 individual symbols (characters):

1. B; is empty and B, is non-empty.
2. B; is bounded and B, is unbounded.
3. B, is a singleton set and B, is a non-singleton set.

4. Bj is finite and B, is infinite.
5. Bj is countable and B, is uncountable.

Solutions
To Formerly Published Problems

e 5673 Proposed by Goran Conar, VaraZdin, Croatia.
Let a, B,y be angles of an arbitrary triangle. Prove the inequality
Vs
acota + pBcotf +ycoty < —.
V3
When does equality occur?

Solution 1 by Paolo Perfetti, dipartimento di matematica Universita di ‘“Tor Vergata'', Roma,
Italy.

We need that x — tanx < 0 for 0 < x < n/2 and x — tanx > O for 7/2 < x < m. The first
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one follows by the definition of tangent while in the second it suffices to observe that tan x < 0 for
/2 <x<m.

"

X 2cos x

—— | = ———(x—tanx) <0, O<x<m
tan x (sinx)3

because when 0 < x < /2 the cosine is positive but x — tan x < 0 while the opposite holds for
/2 <x<m.

We conclude that the function x/tan x, 0 < x < 7 if concave yielding

3 (g cota + écotﬁ + Zcot)/

a+B+y a+B+y
g J—
3 3 3 ) 3 cot

T_ T
3 3 3 3 V3
and this concludes the proof.

Solution 2 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo State Univer-
sity, San Angelo, Texas.

We begin with a result which will be used at a key point later.

Lemma: If f(x) = xcosx — sinx, then f(x) < 0 on (0,7). Proof: We note first that f (x) is
continuous on [0, 7] and f (0) = 0. Further,

f'(x) = —xsinx + cos x — cos x
= —xsinx

<0

on (0, 7). Since f (x) is continuous on [0, 7], f (0) = 0, and f (x) is decreasing on (0, ), it follows
that f (x) <Oon (0,7). o

To proceed with our solution, let g (x) = xcotx on (0, ). Then, for all x € (0,7),
g (x) = —xcsc? x + cot x
and

g" (x) = —x[2cscx(—cscxcotx)| — esc® x — esc® x
= 2xcsc® xcot x — 2csc? x
= 2csc’x(xcotx — 1)

XCcosx — sinx

sin® x

=2

Since the Lemma implies that g” (x) < 0 on (0,7), it follows that g (x) is concave down on
(0, ). Then, Jensen’s Theorem and the condition @ + 8 + y = & imply that



acota +BcotB+ycoty = g(a)+g(B) +g(y)

V3
Vi
- —. (1)
V3
Further, Jensen’s Theorem and the condition @ + 8 + y = & imply that equality is attained in (1) if
andonlyifa ==y = g -

Solution 3 by Albert Stadler, Herrliberg, Switzerland.

) . . d? 1 — xcotx
We note that the function x — xcotx is concave, since —xcotx = —2 (—) < 0.

dx? sin’x

Hence, by Jensen’s inequality,

acota + fBeotf + ycoty <3 (W) cot (W) = mcot (g) =

T
\/g’
with equality if and only if a=p=y=nr/3.
Solution 4 by Angel Plaza, Universidad de Las Palmas de Gran Canaria, Spain.

Function f(x) = xcot x is concave for x € [0, ]| since f”(x) = 2 (xcotx — 1) < 0, so by Jensen’s
inequality

acota + fBcotf +ycoty <3

a+ﬁ+ycota+ﬁ+7=3zcot£=
3 3 3 3

Sl

where equality occurs if and only ifa = 8=y = 73—T
Solution 5 by Brian Bradie, Department of Mathematics, Christopher Newport University,

Newport News, VA.

Consider the function f(x) = xcot x for x € (0, 7). Then

) % sin2x — x
f'(x) = cotx —xcsc” x = ————
sin” x

and
f"(x) = 2csc? x(xcotx — 1).
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Because

lim xcotx =1
x—0t

1
and Esian — x < 0 for x € (0,7), it follows that f'(x) < 0, xcotx < 1 and f’(x) < O for

x € (0,7). Thus, by Jensen’s inequality

+B+ +B+
acota + fBceotf +ycoty <3 (m) cot (M) d

r

e t— = —.
3 3 3T
Equality holds whena = =7y = g

Solution 6 by Henry Ricardo, Westchester Area Math Circle, Purchase, NY.

The function f(x) = xcot x is concave on (0, 7): f”(x) = 2(cot> x+ 1)(xcot x — 1) < 0. Therefore
we can apply Jensen’s inequality to see that

chclica/COta/ Q‘Fﬁ""}’ CL’+,8+7
3 s 3 N\ )

or

Zacota < 3-7—T-cot ) L.
3 3 V3

cyclic

Equality holds if and only if @ = 8 = y = /3.

Solution 7 by Michel Bataille, Rouen, France.

XCOS X

For x € (0,7), let f(x) = xcotx = ——. We calculate
sin x
sinxcos x — x 2g(x)
f)=—F— [0 =23
sin” x sin” x
where g(x) = xcosx — sinx. We have g'(x) = —xsinx < 0 for x € (0,7), hence the function

g is decreasing on [0, 7] and since g(0) = 0, it follows that g(x) < O for x € (0,7). As a result,
f"(x) < 0and f is strictly concave on (0, ).
Now, Jensen’s inequality gives

@)+ 58) + 1) < 37 (L) < ptays),
that is,
acota + fBcotB + ycoty < 3- ;’—T : \% = \%

Since f is strictly concave, equality holds if and only if @ = 8 = 7, that is, if and only if the triangle
is equilateral.

Solution 8 by Péter Fiilop, Gyomro, Hungary.



Let’s see the left hand side of the inequality as a bivariate function, since y = 180 — a — .

Then let’s look for the maximum value of this function in the range 0° < a@ < 180? and
0° < B < 180°.

1 1 1 1 m
fla,B) = a(tan(a) + tan(a +ﬁ)> +B<tan(ﬁ) + tan(a —|—,8)) B tan(a + B)

A necessary and sufficient condition for the existence of a maximum value are the followings:

d d
1. Necessary conditions: d_f = 0and é = 0. Solution of the equation system results
@
the stationary points.
d*f d? d? d? d?
2. Sufficient conditions: KU < / ) ( / ) > 0 and 47 < 0in the
dafz dﬁz dad,B d,Bda dafz
stationary points.
1. From the necessary conditions we get:
1 a 1 B

tan(a) sin2(a) - tan(ﬂ) B SiIlZ(ﬂ)
. . . , : df . .
The trivial solution arises: @ = 8. Let’s substitute back to o 0 we get the following equation:
a

df 1 1 a 20 —

da  tan(a) * tan(2a)  sin*(a)  sin*(2a)

Which is true if @ = 73—T, andB =vy = g as well.

2. From the sufficient conditions we get:

a’f 2 a 4 a
o ) )
da*jo—p  sin’*(a) \tan(a) sin’(7 — 2a) \tan(2a)
Checking at d point it is equal to §( dl 1), it is less then zero
a== u — 1), zZero.
3 33
2 2
f(a,p) is symmetrical regarding «, 3, so d_,82 provides the same result as we have for T
a
Calculating the second order mixed partial derivatives they equal to zero, the sufficient conditions
aremetinthea =B =1y = %T point. f(g, g) = maximal.



Let’s calculate the function value in this point (or put the point into the statement):

T bg 1 1 n 1 1 i
f(g §) B §<tan(§) * tan(%”)) * §<tan(§ * tan(%”)> B tan(%")
T m/ 1 1 b |
163505535

The equality occurs when the triangle is equilateral.

Solution 9 by Toyesh Prakash Sharma (Student) Agra College, Agra, India.

Let, f(x) = xcotx then, f (x) = cotx — xcsc?x = f (x) = 2esc® x(xcotx—1) < 0 for

X € (O —) 80, f (x) = xcot x is convex in nature as a result of which using Jensen’s inequality

acota +Beotf + ycoty _ (a +B+7) cot (a +ﬁ+y)
3 A 3 3

acota + Bcotf + ycoty < mcot (g)

T
acota + BeotB + ycoty < —
V3
And equality occur whena = 5 =y = ;—T

Also solved by Michael Brozinsky, Central Islip, NY and the proposer.

e 5674 Proposed by Kenneth Korbin, New York, NY.

Find positive rational numbers x and y such that
[(x +iy) + (x— iy)7]2 + [(y +ix) + (y— ix)7]2 = 4,

where i* = —1.

Solution 1 by Henry Ricardo, Westchester Area Math Circle, Purchase, NY.

Letting x + iy = z, we have y + ix = i(x — iy) = izand y — ix = —i(x + iy) = —iz. Then

[(x +iy) + (x— iy)7]2 + [(y +ix) + (y — ix)7]2

= [27 + 27]2 + [(i2)7 + (iz)7]2

= (M+2@7+7%) + (2 +2@ - )

= 4zZ) = 7" =1 = +y =1
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So we are looking for rational points (x,y) on the unit circle. For example, (x,y) = g, g) is
a solution. Furthermore, elementary number theory tells us that every Pythagorean triple (a, b, ¢)
corresponds to the rational point (ﬂ’ é) . (For a deeper dive into these waters, see "The Group of
Rational Points on the Unit Circle" %yCLin Tan in the June 1996 issue of Mathematics Magazine.")

Solution 2 by David A. Huckaby, Angelo State University, San Angelo, TX.

Write x + iy = re, where r = 4/x2 4+ y2 and 6 = arctan ( ) So
X

[(x +iy) + (x— iy)7]2 [re’™ + rle™7)?

rl4el419 + 2r14 + r14efl419.

Since y + xi is the reflection of x + iy about the liney = x, y + xi = ré'G=9_So

2 ST
[(y + l.x>7 + (y — ix)7:| = [r7e7l( 6) + r7e*7l(§79)]2

— PGB0 | 914 | 14, 14i(5-6)
B T e
where we have used e*'*%2 = (e*2)!* = (£i)"* = —1. Therefore

[(x +iy) + (x— iy)7]2 N [(y +ix)T + (y — ix)7]2

14 14i0 14i60 r14e—1410 + 2}"14 o r14 14i0 _ 47‘14.

+2r! 4 e e

So the original equation is 4r'* = 4, or r'* = 1, that is, (x2 +y*)7 = 1. Clearly one solution is

X:yZT.

Solution 3 by Albert Stadler, Herrliberg, Switzerland.

[(x +iy) + (x - iy)7]2 + [(y +ix) + (y— ix)7]2 —

. .\ 14 2 27 . \14 . 14 2 27 . N4
=(x4+iy) +2(x+y) +(x—dy) ++ix) +2(x+y) +(y—ix) =

7
= 4<x2 —l—y2> ,

since (x + iy)'* = i"(—ix + y)'* = —(—ix+y)"* and (x — iy)"* = M (—ix — )" = —(ix + y)"

Hence x* + y* = 1, and we need to find the rational points (x,y)eQ* on the unit circle. This is
equivalent to finding the integer solutions of x*> + y* = z>. It is well known (see for instance [1],
Theorem 225) that the most general solution of the equation x*> + y* = z” satisfying the conditions
x>0, y>0, z>0, x and y coprime and x even is x=2ab, y=a’-b*, z=a’+b?, where a, b are integers

8



of opposite parity and a and b are coprime and a>b>0. There is a 1:1 correspondence between
different values of a, b and different values of x,y,z.

So
{(x,y) GQZ‘XZ + 3% = 1} —
2ab 612 — b2 a2 _ b2 2ab
- <a2+b2’a2+b2> a,beZ,(a,b)# (0,0) <a2+b2’a2+b2) a,beZ, (a,b) % (0,0)
References

[1] G.H. Hardy and E.M. Wright, An Introduction to the Theory of Number, 5" edition, Oxford at
the Clarendon Press, 1979.

Solution 4 by Angel Plaza, Universidad de Las Palmas de Gran Canaria, Spain.

Ifz=x+1iy,thenZ = x —iy,y + ix = iz, and y — ix = iz so the proposed equation may be
written as (7’ + Z')? + (—iz’ —iz’)* = 4, which after some algebra becomes 4|z|* = 4, so the
solution is |z| = I, thatis x € (0,1) n Q,and y = /1 — x?, with y € (0,1) n Q. For example,

x =3/5,y = 4/5 is a solution to the given equation.

Solution 5 by Sean M. Stewart, King Abdullah University of Science and Technology, Thuwal,
Saudi Arabia.

Let z = x + iy. Then
—iz=y—ix, z=x—1y, and iz=y+ix.

So we can rewrite the given equation as

2 2
<z7 - Z7> - ((12)7 + (—iz)7> = 4.
After expanding and simplifying one is left with |z|"
rational solutions for x and y, then x> + y* = 1.
Let (a, b, ¢) denote the set of all Pythagorean triples where a, b, and ¢ are positive integers such
that 0 < a < b < c. The required solutions to the equation (there are an infinite number of them)
are therefore given by

= 1. Since we are only interested in positive

a b b a
X=-,y=— 0 XxX=—,y=—.

c c c c
As a simple example of such solutions, since (3,4,5) is a Pythagorean triple two positive rational

solutions to the equation will be:
3 4 4 3
= -, = — or = -, = —.
U575 TTsr75

Solution 6 by Brian D. Beasley, Presbyterian College, Clinton, SC.

We first note that there are infinitely many pairs of positive rational numbers x and y such that
x* + y* = 1; those corresponding to primitive Pythagorean triples have the form

9



2ab and a’ — b?
X = ——- = —_,
YT

a* + b?
where a and b are positive integers with a > b, gcd(a,b) = 1,and a # b (mod 2).

Next, we show that all such pairs (x, y) satisfy the given equation. We have

(x +iy)" + (x —iy)” = 2(x7 —21xX°y* + 352°y* — Tx°);
similarly, we calculate

(v +ix)" 4+ (y —ix)" = 2(y" — 21y°x* 4 35y°x* — Tyx%).
Then substituting y*> = 1 — x* yields

u=x —21xy* + 353" — Txy® = 64x7 — 112x° + 56x° — 7x
and
v =y —21y°x% + 35y°x* — Tyx® = y(—64x° + 80x* — 24x% + 1),
so we obtain
u® = 4096x" — 14336x"* + 19712x'% — 13440x® + 4704x° — 784x* + 49>

and

Vo= (1= x)(—64x° 4+ 80x* — 24x% + 1)?
= —4096x" + 14336x'> — 19712x'° + 13440x® — 4704x° + 784x* — 49x* + 1.

Hence u> + v* = 1 as needed.

Solution 7 by Brian Bradie, Department of Mathematics, Christopher Newport University,
Newport News, VA.

Let x = re. Then

x—1iy = re ",
y4+ix = réG™" = jre™ and
y—ix = —ire®,
S0
(x+iy) + (x —iy) =2 cos 70, (y+ix)" + (y—ix)" = —2r"sin76,
and

2 2
[(x +iy) + (x — iy)7] + [(y +ix) + (y - ix)7] = 45",
This will be equal to 4 provided r = 1. It follows that x and y can be taken as the sine and the
cosine values associated with any Pythagorean triple. In particular, we can take

3 4 5 12
X=—Z-,y=—Z- O X=—7=,y=—=

5 5 13 13
10



Solution 8 by the Eagle Problem Solvers, Georgia Southern University, Statesboro, GA and
Savannah, GA.

One possible solution is (x,y) = (3/5,4/5).
Notice that y + ix = i(x — iy) and y — ix = —i(x + iy). Thus,

407+ (= i) = 7 (= i)+ (=) (e ) =i | e+ )T = (= i)

and
. \7 . \T 2 . \7 = \7 2
|6+ )7+ = i) = = e+ i) = (x = )]
= —(x+ i) +2(x+iy) (x —iy)" — (x —iy)"*
= —(x+ iy)14 +2(x* + ) = (x — iy)14.
Meanwhile,
2
[(x +iy) + (x— iy)7] = (x+ i) +2(2 + ) + (x+iy)",
so that

[(x +iy) + (x — iy)7]2 + [(y +ix) + (y — ix)7]2 = 4(x* +y%)".

Thus, if the sum on the left is equal to 4, then (x2 + y2)7 — land x* +y* = 1. So, if (a,b,c) is any
Pythagorean triple of positive integers, with a* + b*> = ¢?, then x = a/c and y = b/c are positive
rational numbers that satisfy the given equation. One possible solution is (x,y) = (3/5,4/5).

Solution 9 by Bataille, Rouen, France.

2 2
LetL = [(x +iy) 4+ (x— iy)7] + [(y +ix) + (y — ix)7] and let z be the complex number x + iy.
Then, we have x — iy =7,y + ix = izand y — ix = —iz, hence
L= +7)P+ (@) + (—i2)) = +2)V+ (-7 +iz) = +7) - -7)~
Thus, L = 47’7 = 4(x* +y*)” and L = 4 if and only if x* + y* = 1.

It follows that L = 4 when x = V=3 and more generally when

{ } m* —n®>  2mn
x’ = b b
Y m? + n?’ m? + n?

where m, n are positive integers such that m > n.

Solution 10 by Toyesh Prakash Sharma (Student), Agra College, Agra, India.

11



Let x = rcosf and y = rsin 6 then,

[+ )+ (= )]

2
— [r7 (cosO + isin®)’ + r” (cos @ — isin 9)7]
_ 4 [(cos 70 + isin76) + (cos 70 — isin 76’)]2

= 4r'* cos’ 70

While
2

|6+ 207+ (v = )]

— i) i+ iy)7]2 =~ |G i) = (x - W)T
— |17 (cos 0+ isin0) — 7 (cos 0 — isin 9)7]2
— 1 [feos 70 isinT0) — (cos70—isin70)]

= 4r'sin* 70

Then,
2

’ + [(y+ix)7 + (y — ix)7] =4

= |+ + (= 0|
= 4r'* cos? 760 + 4r'*sin* 70 = 4
= 471 <0052 76 + sin® 79> =4

= Mo

7
=>(x2+y2> =l=x=14/1-)»

For positive rational numbers x and y we can say that x = /1 — y2.

Also solved by Bruno Salgueiro Fanego, Viveiro, Lugo, Spain; David Stone and John Hawkins,
Georgia Southern University, Statesboro, GA; Péter Fiilop, Gyomro, Hungary; and the pro-
poser.
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e 5675 Proposed by Nikos Ntorvas, Athens, Greece.

Suppose a,b,c,n > 0anda + b + ¢ = 1. Prove:
I a+1)" b+ 1) (c+ 1) < e (na)™ (nb)" (ne)™.

Solution 1 by Angel Plaza, Universidad de Las Palmas de Gran Canaria, Spain.

By rearranging terms, the inequality becomes

|4 na \* nb \?” nc \°
e n < .
c+1 a+1 b+1

Now, by taking logarithms the inequality reads as

4 na nb nc
1—;<aln(c+1> +bln(a+1)+cln<b+1).

Forn = 1,2, 3, 4 the inequality may be checked easily. Let us consider function

na nb nc 4
=al bl In{—— ) -1+ —-.
) “n(c+1>+ n(a+1>+cn<b+1) T

: + b+ 4 —4 . :
Since f'(x) = arore - = a >— = 0 for x > 4, so f(x) is increasing for x > 4, and so the
X X x

problem is done.

Solution 2 by Michel Bataille, Rouen, France.

1
Ifn=4anda=b=c= 3 the left-hand side equals the right-hand side. So we prove

e"la+ 1) (b + 1)“(c + 1) < e*(na)"(nb)"™ (nc)™.
This inequality is successively equivalent to

n+nbln(a+ 1) +ncln(b + 1) + naln(c + 1) < 4 + naln(na) + nbIn(nb) + ncln(nc)
4
l+bln(a+1)+cln(b+1)+aln(c+1) <=+ (a+b+c)ln(n) +aln(a) + bIn(b) + cln(c)
n

I 1 1\ 4
bln(a+ >+cln<b+ )+aln<c+ )<—+1n(n)—1.
b c a n

4

A quick study of the function f defined by f(x) = — + In(x) — 1 shows that f(x) > f(4) = In(4)
X

for all positive real numbers x. It follows that it is sufficient to show that

1 b+l 1
bln(“+ )—i—cln( il )+aln(c+ )gln(4).
b c a

13




We are done because In concave on (0,00) anda + b + ¢ = 1 yield

a+1 b+1 c+1 a+1 b+1 c+1
bln +cln +aln <In|(b- +c- +a- ,
b c a b c a

that is,
1 b+1 1
bln (a+ ) +cln< i ) +aln (C+ ) < In(4).
b c a

Solution 3 by Paolo Perfetti, dipartimento di matematica, Universita di “Tor Vergata'', Roma,
Italy.

Ifa = b = ¢ = 1/3 we have ¢"4" < ¢*n" and it is false for n = 4 so I think the inequality
should be with a <

We need some facts.

Dfordy + 4, +...+4,=1
2 Aif (xi) = f(z Aix;), 2 Aig(x;) < 8(2 Aix;)
i—1 i—1 i1 i—1

respectively for f convex and g concave.

11)

+b+c)
ab+bc+ca < % — d*+b*+c? = abtbctca = (a—b)*+(b—c)*+(c—a)* =0
thus ab + bc + ca < 1/3.
+b+c)
a2+b2+c2>% a’+ b+ =>ab+bc+ca

which is true and then @ + b* + ¢* > 1/3

1i1)

(xInx)” — i >0, (n(1+0) = o <0
The inequality is
44 (a+b+c)nlnn+n(alna+blnb+clnc) >n+n(bn(l +a) + cIn(l + b) + aln(1 + ¢))
Using ii1), 1) and a + b + ¢ = 1 we can write
4+ (a+b+c)nlnn+n(alna+blnb+clnc) =4 +nlnn+nin(a> + b* + *) =

1
4+nmn+nm§

n+nln(l +ab+ bc+ ca) =n+nbn(l1 + a) + cIln(l + b) + aln(1 + ¢))

14



thus it suffices to show
44+ nlnn—nln3 = n+nin(l + ab + bc + ca)
Let’s rewrite it as

4+3glng—g(1+ln(1+ab+bc+ca))3>O, %‘:x

and define the function f(x) =4 + 3xInx — 3x(1 + In(1 + ab + bc + ca)), x > 0.

lim f(x) =4, lim f(x) = o,

x—07F X—00

ff(x)=3+3Inx—31+1In(l+ab+bc+ca))>0 < x=(1+ab+ bc+ ca)
namely x > (1 +ab + bc + ca) =%
1
fx)=4+3xInx—3x—3xInx=4—-3x>0 <= ab+bc+ca< 3
and this follows by ii). The consequence is f(x) > 0 and this concludes the proof.

Also solved by Albert Stadler, Herrliberg, Switzerland and the proposer.

® 5676 Proposed by Péter Fiilop, Gyomré, Gyomro, Hungary.

Without using integral identities of the Catalan’s constant G, prove

%Lﬂm Ln/zx lcos(:+ 5 COS(MI_ VJ dudv = i (2(;1_—3171)2

n=0

Solution 1 by Albert Stadler, Herrliberg, Switzerland.

We have
1 N 1 _cos(u+v) +cos(u—v)
cos(u+v) cos(u—v)  cos(u+v)cos(u—v)
2cosu cosv

(cosu cosv — sinu sinv ) (cosu cosv + sinu sinv )

2COSuU COSV 2CcoSu CoSv

2 2, wing <inZy . . ) )
COS™U COS7V — SInu Sin'y (1 — sm2u> (1 — sm2v> — sin?u sin®v

2cosu cosy

1 — sinu — sin’vy

Thus the substitution X = sin u, y = sin v gives

1 (% (3 1 1
== + dudv =
2Jo Jo [cos(u+v) = cos(u—v) 0

15
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Jxl/i L
o 1—x2—y? ey =



[ N——
a 0 01_x2_y2xy.

We switch to polar coordinates by applying the substitution x =r cos t, y = r sin t and get

% \/E(I:()sr 2}" % 1
I = drdt = — I 1-— dt =
JO L 1 —1r2 : JO 08 ( 2cos?t )

i 21 i i
— _J log <COS( ) ) dt = —J log (cos (2t) ) dt + glogZ + ZJ log (cost ) dt =
0 0

2cos?t 0

1 (2 i
= ——J log (cost ) dt + 7—Tlog2 + ZJ log (cost ) dt.
2 Jo 4 0

We claim that

fz log (2cost ) dt = Jz log (2sint ) dt = 0. (1)
0 0

Indeed,

3 5 1 (3 1 (2 in (2¢
J log (cost ) dt = f log (sint ) dt = = f log (cost sint ) dt = = f log sin (21 dt =
0 0 2 Jo 2 Jo 2

1 sin? 1 (2 sint 1 (2 b4
| dt = — I — ) dt == | int ) dt — —log2
4L°g(2) 2Jo Og(2> 2L og (sinr) df = 7log2

which implies

[NTEY

%
f log (cost ) dt = | log(sint ) dt = —glogZ
0 0

and (1). Thus, by (1),

1
I = glogZ + 2] log (cost ) dt = ZJ log (2cost ) dt =
0 0

iy

1
log (2cost ) dt = —ZJ log (2sint ) dt =
0

[STE

3
=2f log(ZCost)dt—Zf
0

I

i i . .
— —f log (4sin2t> dr = —J log ((1 — ez”> (1 - e‘z”>) dt =
0

N

= 1 Jg log (1 —e”) dt—lfﬂ log( 7" ilfn cos (nt) dt = i(_—l)n
2 ) 2 )y “n = @n+1)
0 1
Termwise integration is permitted, since the Fourier series —log 1 — e Z —e™, t#0,isa
n

n=1
function in L;.
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Solution 2 by Brian Bradie, Department of Mathematics, Christopher Newport University,

Newport News, VA.

The change of variable 6 = u 4+ v and ¢ = u — v yields

7T/4 71'/4 1
f f v uaw
o Jo cos(u+v)

/4 rr/4 1
|| sy duey
o Jo cos(u—v)

Therefore,

1 /4
3l

N

—d
cos b

I

/4 COSQ
/4 7T 2Q0

COoS ¢

0

cosd

7/2+¢
f—n/4 J

dpdf + - J f
n/4

/2 7T _

LM cos 6

/4 1
+
L [cos(u +v)

COS

dfdy + — f
Cos ¢

/4 T
dgo +J 1Y do

0 COS¢
de.

1
dudy

(u—v)

7/2—6

w210 €050

d9 and

J«N/Z )

COs ¢

= = f —d6+J 2 d0+J 2 do
2 \Jy cosé x/4 COSO o cosé
_ 1J”/2%—9 _ lj’“i
2 )y cosf 2 )y sin6
With the substitution § = 2tan™ x,
1 (™% @ !tan™!
—J —ab = J an X dx;
2 )y sinf 0o X
now, with the power series
tan—! i (=1)" 2n+1
an = ,
VN
it follows that 1 . 1 .
tan~! x x* —1)"
dx = —-1)" = —_—
L X * ,;)( )Jo2n+1 * %(2}14—1)2

Finally,

0

1 /4 rr/4 1
- +
2 L L [cos(u +v)  cos(

Solution 3 by Narendra Bhandari, Bajura district, Nepal.

=

17

(=1)"

dudv = Z —_
= (2n + 1)?

de do

dfdy



0 1 + sin(x +
< 1+sin(x+y) — sec(x+y). Utilizing

We notice that sec(xty) = P log 1Y) ) and since
x cos(x £y

cos(x ty)
the facts we noticed, we arrive at

0= [ s () e (SRS

z 1+sin<y+§> 1+sin<§—y>

% (8+ () +8-(v)dy =] |log
JO JO cos <y + %) cos (f;f - y)

z 1 . 1 —si
_J log ( + smy) ©log ( smy)) "

0 COS y COS y
since the latter integral is fairly zero which is easy to justify as 21log(cosy) = log(1 — sin’y) =
log(l + siny) + log(l — siny) and log(1/cos®y) = —2log(cosy). Now enforcing the substitution

ENEY

0
and hence

+ log dy

- + y—y and vl y — y in the former integrals, we obtain

4
i 1 + sin(y) 2 1 +siny
J (8+(») + (J f ) log ( > dy = J log (— dy
0 cosy 0 Cosy
1+ si 1 (? 1+ si :
= f log ﬂ dy = —f log m dy = J tanh™' (sin y)dy
0 1 —siny 2 ) 1 —siny 0

s

[STE

2

3 2 Itan—!
= J tanh~' (cos y)dy = ytanh~' (cosy)| + —d = ZJ an ydy
0 o Sy o Y
1 0 2n+1 0 n 0
1 y (=1
- 2f N WA f dy =2
)y (2( "o ) 2 PN

3y "tan~'y 2 tan <
We obtain | ——dx =2 f dy by using the identity siny = and further we
0

y
2
o Smy Y 1 + tan? ()

have used Maclaurin series of tan~' y. On dividing both sides by 2 of the expression above proves
the proposed result.

Solution 4 by Sean M. Stewart, King Abdullah University of Science and Technology, Thuwal,
Saudi Arabia.

Denote the integral to be proved by /. On finding a common denominator in the integrand it may

be written as i
ic + cos(u —v
f J ( ) dudv.
cos(u + v) cos(u — v)

18




From elementary trigonometric identities, since

cos(u + v) + cos(u — v) = 2cosucosv, and

cos(u + v) cos(u — v) = cos® ucos’ v — sin® usin® v,

we may rewrite the integral as

%
I =
0 J
cosucosv

0

(]
o Jo (1 — sin® u) cos? v — sin® u(1 — cos? v)

0

n
J‘A
0 J

Enforcing a substitution of # = sin u in the inner u-integral produces

i Vo dt i K
I = J cos v J — | dv= f tanh ™! dv
0 o Cos?vy—f? 0 cosv/ |
i secv
— | tanh™! dv. (3)
[ (2]

We now show how the integral appearing in (3) can be evaluated. Let

L]

coSucosv

—————dudv (2)
cosZucos?v —sin“usin” v

ISE

dudv

n
4 CcosSucosv
——dudv.

cos?v — sin” u

i i
Jg = J log(sinx)dx and Jc = f log(cos x) dx.
0 0

. o T . .
Enforcing a substitution of x — 5 —xin Jc gives

%
Je = f log(sin x) dx.

s

4
For the sum of these two integrals we have

n

2

Js +Jc = f log(sin x) dx = —glog(Z),
0

this integral being nothing more than Euler’s famous log—sin integral. For the difference between
these two integrals we have

s

Jg —Jc = f log(tan x) dx.
0

Enforcing a substitution of y = tan x yields

llog()’) = ! 2
Js —Jc = dy =Y (=1)" | y*"log(y)dy.
s —Je L1+y2y i )fy og(y) dy

n=0 0

19



Integrating by parts produces

$ore 2n+1J, S (on+1)? '

n=0
Solving the pair of simultaneous equations for Js and J¢ yields

G G n
Jg = 5 Zlog(Z) and Jc = 5~ Zlog(2). &)

Now let B
1

I, = f log(sinx 4+ cos x + 1) dx.
0

. o T .
Enforcing a substitution of x — 5 — x gives

%
I, = J log(sin x + cosx + 1) dx,

i

or

.

2
21, = J log(sin x + cosx + 1) dx,
0

after adding the above integral to the original integral for /,. Multiplying both sides of the above
integral by a factor of 2 produces

: 5
4I, = J log?(sinx + cos x + 1) dx = J log[2(1 + cos x)(1 + sinx)] dx
0 0

= glog(2) + J log(1 + cos x) dx + f log(1 + sin x) dx.
0 0

. . . e T
Enforcing in the rightmost integral a substitution of x — 57X produces

s

2
4I, = glog(2) + 2L log(1 + cos x) dx

2

3 3
= —ﬂlog(2) + 4J log (cos E) dx.
2 o 2

%
T log(2) + ZJ log (2 cos’ g) dx
0

Finally, enforcing a substitution of x — 2x in the remaining integrals yields

s

3 1
41, = g log(2) + SL log(cos x) dx = 4G — glog(Z),

where the result for J¢ given in (5) has been used. Upon dividing by a factor of 4 it immediately
follows that x
I, =G — 3 log(2).

20



Also let

iy

I, = f log(sinx + cos x — 1) dx.
0

Summing /, to I,, yields
3 i
I, +1, = J log ((sinx + cos x)* — 1> dx = f log(2 sin x cos x) dx
0 0

i 1 (2
= J log(sin2x) dx = —f log(sin x) dx = I log(2).
0 2 Jo 4

Here a substitution of x — g has been enforced before recognising the remaining integral as Euler’s
log—sin integral. But since the value for 7, is known, namely I, = G — glog(Z), from the above

result for the sum of these two integrals we see that [, = —G — glog(Z). For the difference, as
I, — I,, = 2G one has

i i 1
I,,—Imzf log (S?HHCOS” )dx=2G. ©6)
0 sinx + cosx — 1

Recalling

1 1
coth™' u = = log “r , for|u|l >1,
2 u—1

if we set u = sin x + cos x in the integral appearing in (6), it can be rewritten as

ENEY

f coth™ (sin x + cos x) dx = G. (7
0

Taking advantage of the identity sinx + cosx = \@cos(g — x) and enforcing a substitution of

ng—xin(7),weﬁnd

%
J coth™! (\/Ecos x) dx =G. (8)
0
1
Furthermore, the identity coth™' (=) = tanh™" u for u # 0 allows one to rewrite integral (8) as
u

7 sec x
tanh ™' [ —= | dx = G,
fo ( \/§>

which is just (3). So in conclusion we have

"= f f lcos<:+v> * cos(i—w} i = 3 % - ¢

n=0

as required to prove.
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Solution 5 by Paolo Perfetti, dipartimento di matematica, Universita di “Tor Vergata'', Roma,
Italy.

Let’s change variables s = u 4+ v, t = u — v. The integral becomes

[
r | coss ~ cost

R is the rombus of vertices (0,0), (n/4, —n/4), (7/2,0), (n/4, 71/4) and reads as

U N A R R

B f‘*2sds +f§( —2s)ds+f (t—7r/4)dt+fZ (n/4—1t)dt|
- 2| Jycoss z COSS == cost 0 cos t B
1
2
1

| =

+ =

JZZSds N f;(ﬂ — 2s)ds N JZ(_I —nt/4)dt N JZ (n/4—1t)dt|
ocoss Jr coss 0 cos t 0 cos t B

r—2s8)ds 1 (* u "arctany
= = = —du = dy =
2 o Slnu  ~—— J, y

u=2 arctany

z CcoS § 2

0 1 y2k
= = —1’“J dy=G
L 2k+1 ;f Pl e

The exchange between the series and the integral is allowed by a Abel’s theorem via the uniform
o0 2%

convergence of the power series Z (—
k=0

1)k2k — in the interval [0, 1].

Also solved by the proposer.

e 5677 Proposed by Brian Bradie, Department of Mathematics, Christopher Newport Univer-
sity, Newport News, VA.

Solve the differential equation

= tan(x +y) — cot(x — y).

Solution 1 by the Eagle Problem Solvers, Georgia Southern University, Statesboro, GA and
Savannah, GA.

Notice that
sin(x + y) sin(x — y) — cos(x — y) cos(x + y)
cos(x + y) sin(x — y)
—2cos(2x)
sin(2x) — sin(2y)’

tan(x +y) — cot(x —y) =

22



hence, the given differential equation is equivalent to
2 cos(2x)dx + (sin(2x) — sin(2y)) dy = 0.
Setting M(x,y) = 2cos(2x) and N(x,y) = sin(2x) — sin(2y), we have

OM ON
Kl 2cos(2x) = ekl

oy ox’
so the equation is not exact. However, since
N _ oM
Ox oy 1
M

is a function of y, then multiplying by the integration factor p(y) = € gives the exact equation
2¢" cos(2x)dx + €' (sin(2x) — sin(2y)) dy = 0.

A solution to this equation is a function F(x,y) such that

oF oF . .
= 2¢” cos(2x) and = ¢’ (sin(2x) — sin(2y)) .
Thus, F(x,y) = €’sin(2x) + f(y) for some function f(y), and
d
d_ij = —¢”sin(2y).
Using integration by parts, we compute that

e’

f0) =3 (2cos(2y) — sin(2y)),

giving the solution to the original differential equation as

F(x,y) = €’sin(2x) + %y (2cos(2y) — sin(2y)) + C.

Solution 2 by Sean M. Stewart, King Abdullah University of Science and Technology, Thuwal,
Saudi Arabia.

Using elementary trigonometric identities we rewrite the right-hand side of the differential equation
as follows

dy _

- tan(x + y) — cot(x — y)
_ sin(x + y) B cos(x —y)
cos(x+y) sin(x—y)
sin(x + y) sin(x — y) — cos(x — y) cos(x + y)

sin(x — y) cos(x + y)
1 (cos(2y) — cos(2x)) — 1 (cos(2x) + cos(2y))
1 (sin(2x) — sin(2y))
—2 cos(2x)
sin(2x) — sin(2y)’

23



or after rearranging
d
—2cos(2x) + (sin(2y) — sin(2x)) d—y = 0.
X

The differential equation is not exact. Now suppose an integrating factor R(y) can be found that
will make the differential equation exact. In this case, writing the differential equation as

dy
M(x,y) +N(x,y)a =0,

where
M(x,y) = —2R(y)cos(2x) and N(x,y) = R(y) (sin(2y) — sin(2x)) ,

M N
it will be exact if &_ = —. In this case we see that
Oy ox
dR
D R(y) = R(y)=¢.

So an integrating factor what will make our differential equation exact is ¢’. Multiplying both sides
of the differential equation by this integrating factor produces

—2¢" cos(2x) + €’ (sin(2y) — sin(2x)) Z—y =0.
x

Now suppose a function ¥(x, y) can be found such that ¥, (x,y) = M(x,y) and ¥,(x,y) = N(x,y).
If this can be done then the differential equation can be expressed as

o)+ ()P =0 or L y(x)] = 0

So a solution to the exact differential equation will be W(x,y) = k, where k is a constant. In our

case
oY

=M = —2¢ 2x).
" (x,y) e’ cos(2x)

SO

¥(x,y) = —2¢ Jcos(Zx) dx + n(y) = —e”sin(2x) + n(y).

Here 7(y) is an unknown function to be determined. Also

oY
e N(x.y)
= —¢’sin(2x) + 1/'(y) = € (sin(2y) — sin(2x))
1'(y) = € sin(2y)
=n(y) = Jey sin(2y) dy + k;.

Integrating by parts twice produces
1
nly) = gey (sin(2y) - 2cos(2y)) + k.
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So we have found
P(x,y) = —€’ sin(2x) + éey (sin(2y) — 2cos(2y)) + ki.
The (implicit) solution to the differential equation is
e’ sin(2x) — %ey (sin(2y) — 2cos(2y)) =c,
where c is a constant.
Solution 3 by Albert Stadler, Herrliberg, Switzerland.

We note that |
cos (x +y)sin(x —y) = 3 (sin (2x) —sin(2y) ),

sin (x + y) sin (x —y) —cos(x —y) cos (x +y) = —cos (2x) .
Hence
in (x - V) sin (x — v) — B .
tan (x +y) —cot (x —y) = sin (x + y) sin (x — y) f:os (x —y)cos(x+y) _
cos (x + y) sin (x —y)

_ 2cos (2x)
~ sin(2x) —sin(2y)

Hence

2cos (2x) dx + (sin (2x) — sin (2y) ) dy = 0.
We see that u (y) = €’ is an integrating factor, since

0

= [,u (y) (sin (2x) — sin(2y) )] = 2(% [ (v) cos (2x) |.

We deduce from 3
—f(x,y) = 2€’cos (2x)

ox
that f (x,y) = €’sin (2x) +¢ ().
From
(%f (x,y) = €’sin (2x) + ¢’ (y) = € (sin(2x) —sin(2y) )

1
follows that ¢’ (y) = —e”sin (2y) so that ¢ (y) = —gey (—2cos (2y) +sin(2y) ).
1
Thus the general solution is given by f (x,y) = €’sin (2x) — gey (—2cos (2y) +sin(2y) ) =C

which is equivalent to

sin (2x) = = (—2cos (2y) + sin(2y) ) + Ce™.

| —
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We verify this solution by differentiation:

2
2cos (2x) = 3 (2sin (2y) + cos (2y) )y — Ce™y

so that
. 2cos (2x) B
Y 2 (2sin (2y) + cos(2y) ) — Ce™
B 2cos (2x) B
2 (2sin (2y) + cos (2y) ) —sin(2x) + 1 (—2cos (2y) + sin(2y) )
2cos (2x)

~ Tsin (2x) + sin (2y) = tan(x+y) —cot(x—y).

Also solved by the proposer.

e 5678 Proposed by Sedn M. Stewart, Physical Sciences and Engineering Division, King Ab-
dullah University of Science and Technology, Saudi Arabia.

For positive integers m and n define

. m [ km
Sp(n) = Ztan2 (2n+ 1) :

Express S| (n), S, (n) and S5 (n), each as a polynomial in 7.

Solution 1 by Albert Stadler, Herrliberg, Switzerland.

(a) We have for 1<k<n,

2n+1 2n+1
: k ik ol mk ik 2n+1
1 + itan <2n+1) cos (2n+]> + isin <2n+1) ( o > |

. k ik .t k
1 —itan (2n+1> cos <2n+1> — s <2n+1>

_ _mik
e 2n+

So
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Put x; = tan® ( > , I<k<n. We see from the above equation that the numbers x;, 1<k<n,

i (—1)" ( 2”2;1 ) X =0,

2n+ 1
are the roots of

m=0
Hence
Z <2n+1>xn—m:1_[ X — X, 22 m (X1 X5 000y X)) XT,
m=0 m=1 m=0
where e,, = e, (x1, X2, . .., x,) denotes the mth elementary symmetric polynomial defined by

e (X1, X2, .5 Xy) = > XjyXjy oo Xy
ISji<jp<<jm<n

We compare coefficients and get

em (X1, X250 Xy) = (2’12:11 ), 0<m<n

Obviously S, Z tan>" (2 n 1) = ; x;' is a sum of mth powers.

According to Newton S 1dent1tles (see http://eﬁ.wikipedia.org/wikifN ewton’s_identities),

Z _emlj(”):(_ 2 _emlj(”>’

valid for all m>1, which readily imply

This is a recursive formula which allows to calculate S, (n) one by one. We find

n k n 2 1
Sl(n)=Ztan2<2n:1) ZZXk=€1=< n2+ )zn(2n+l):2n2+n,

sz(n)=f2<2”4+1 ) +<2”2+1 )Sl(n):%n(2n+l)<4n2+6n*1) _

<8n 4 16n° + 4n? —n)
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S}(n):3<2n6+1>+<2n2+1>S2<n)_(2n$-l>sl<n):

1
= n(@n+1) <32n4 + 80n + 40n% — 20n + 3) -

1

- = (64n6 419275 + 160n* — 14n® + 3n> .

Solution 2 by Henry Ricardo, Westchester Area Math Circle, Purchase, New York.

For any integer k, de Moivre’s formula yields

kr . kn ntl . . X
0052 Jrl+zsm2 1 = coskrm + isinkr = (—1)".
n n

The binomial theorem gives us the equivalent form

2§1 2n+ 1 cos ke O\’ in kn O\t 1)
i = (—1),
= Jj 2n+1 2n+1

Considering the imaginary part of this last equation, we obtain

Z”: 2+ 1\ (o km 2 KT 2n+1-2j 0
l = U.
= 2j 2n + 1 2n + 1

Dividing first by cos®*! (knr/(2n + 1)) and then by tan(krr/(2n + 1)), constants with respect to the
index of summation, we can write

" on 1 ke \"Y & fan 41 N
 t = — | t = 0.
;)( 2j )(’ an2n+1) ;)( 2j ) (an2n+1)

This last equation indicates that (tan kx/(2n + 1))%, 1 < k < n, are the zeros of the polynomial

" 20+ 1 i (2N L (2 L, (DN
S0 Yo (e (e e

Jj=0

Denoting the sum of the kth power of the zeros of the polynomial X" + p;x" ' + pox" 2 + - +

Pn_1X + pn by s;, Newton’s identities yield s, = —py, 55 = p% —2p, S35 = —pf + 3p1p2 — 3ps.
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Applying these to the polynomial in (1), we find that

‘ km 2n+1
_ 2 _ _ _ . 2
Sl(n)—étan (2n+1)_sl__( 5 )—n(2n+l)_2n +n,
Z" kn 2+ 1\° 2+ 1
2(”) k=1 o (2n+ ) . ( 2 ) < 4 )

1
8, 16, 4, 1 n(2n + 1)(4n> + 6n — 1)
3 3 3

n kn 2+ 1\° m+ 1\ [/2n+1 2n+ 1
s = Y (5755 ) == (7)) () ()
i 2n+ 1 2 2 4 6

64 ., 64 5 32, 14, 1
ZEI’I +?l’l +?H—En +§I’l
n(2n + 1)(32n* + 80n® + 40n> — 20n + 3)
- 15
Viete’s formula could also have been used here.

Solution 3 by Michel Bataille, Rouen, France.

In the two featured solutions to problem 11044 of The American Mathematical Monthly, Vol. 112,
No 7 (Aug.-Sept. 2005) p. 657-9, it is proved that

2n+ 1 " 2n
= —1)"! A
Sa(m) = 2L ) ;(zm_zk_l)k

2i
tive integers (ry, ..., r;) such that rj + 2r, + - - - + kr;, = k and where r denotes r| + r, + - -+ + 1.
Applying this general formula, we obtain

2n+1/2
S.(n) = ”2 <1n)A0=n(2n+1).

k T
1 (2n+1Y)"
with Ag = 1 and Ay = Z(—l)’r! 1_[ - ( " ) where the sum is over all k-tuples of nonnega-
ri!
i=1""1

It is easily checked that A} = —n(2n + 1); it follows that

$a) = 2n2+ 1(_1) ((23n)A0+ <2111)A1> _ _2n2+1 (2n(2n— 16)(2n—2) C2P(an 1))’

that 1s,

Saln) = n(2n + 1)(4;,2 + 6n — 1)'

2n+ 1 2n+1\°  n@2n+1)(10n% + 91 — 1)
4 + ) = G , long but easy

Similarly, from A, = —(

calculations give

n(2n + 1)(32n* + 80n> + 40n> — 20n + 3)
S3(l’l) = 15 .
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Solution 4 Paolo Perfetti, dipartimento di matematica, Universita di “Tor Vergata'', Roma,
Italy.

The result is

2n+ 1)(4n* + 6n — 1
S1(n) =2n* +n, Sz(n)=n<n )(4n " ),

3
n(2n + 1)(32n* + 80n® + 40n> — 20n + 3)
S3(n) =
15
My solution is computer assisted.
Let’s start with m = 1.
kn ke SE, 1-Ci, 1
C n = s S = | , e Mmoo -1
=S TS o T T e T
n kﬂ n 1
Si(n) =) tan’ =) — —
1) ,; Rl P ,;cgn "

1 2
Z :_1+Z _2km_ :_1+Z ki ki

p (COS 2511)2 =0 1 + cos 7 S k=0 2 + e+ + e+l
2n 2n 2n 2n
4 4Zk 4 4
=—1+ _— =1+ = - — 1
ZZ—I—Zk—i—Zk ;(Zk—i-l)z ,;)Zk-l-l k=0<zk+1)2
1 2n 4 2n 4
Sl(n) = — — —1 —n (1)
2(,;)&(-1-1 k0(2k+1)2 )
2n
P(Z) P g H(Z _ Zk)
k=0
P(-1)=-2, P(=1)=2n+1, P'(—1)=—2n+1)2n,

P’”( 1) = (2n+ 2n(2n —1), PU(=1) = —(2n + 1)2n(2n — 1)(2n — 2)
W(=1) = (2n + 1)(2n)(2n — 1)(2n — 2)(2n — 3)
P( D(=1) = —=2n + 1)(2n)(2n — 1)(2n — 2)(2n — 3)(2n — 4) (1)
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P 3%
i 1 1 —P(-) _ 1
= — = — =1 —
o1+ Sz—zgl=1  P(-1) 2
> —1 _ dP PP (P)
H(z—z)? dzP P2
thus
& 1 An(2n+1)—(2n+ 12 4n? -1
=0 (1 +Zk)2 4 4
It follows )
" ke \7C 1 1. 4?2 —1
==|4 —)+4 —1 | =2n*+2
k_l(C082n+l) 2<(n+2)+ 1 )) n* +2n

and finally (1)

1 1 4n® — 1
Sl(”)=§<4(”+—)+4 n4 —1)>—n=2n2+n
m =
n S4n n 2 1
o (1 ot c—4> @
k=1 "k,nn k=1 k.n k.n
2n 2n 2n
1 4 16
k=1 ke 4:_1+,;) 2kn 2:_1+,;) 2k a2
= <cos m) = (1 + cos 2n+1) = (2+ezn+l +ezn+1>
2n 2n 2
4 16z
=-1+ =1+ K~
;(2+zk+zkl)2 ;(Zk+l)4
2n
16 32 16
=—1+ _
/;)((1+Zk)4 (1 +z)? (1+Zk)2>
and .
C 1 -1 & 8 16 8
——-7+2( - + ) 1)
k=1 (cos 2:3:1)4 2 S\0+z)t (I+z)  (T+z)
We need
&P B d | p” (P/)z B p pP'p P P . 2(P/)3 B 2n o)
d>P dz|P P2 | P P P? P A (z—z)
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which evaluated at z = —1 gives

2n

) (2n—1)2n(2n+1) _-2n2n+1)> _(2n+1)3
> .= -3 +2 =
LT+ 2) 2 4 8
2+ 1 1202 4 4n — 1

”4+ (—4n(2n—1) + 6020+ 1) — (20 + 1)) = ”++

i -6 B d3 P/ B d P/// P//P/ 2P/P// . 2(})/)3 B
(z—z)* d¥P dz| P P? -

2 3
= P P

B P(IV) p"p 3 [P///P/ + (P//)Z 2P//(P/)2] > [3(13/)21)// 3(P/)4]

P P? P? P3 P3 P
P(IV) pP"p P")? 12P" (P2 6(P 4

P PP (PR PR 6(P) 02
P 2 2 P3 P

> ﬁ — (2n+ 1)[(2n(2n —Dn—1)—2n2n—1)2n+1)—322n+ 1) +

+3n(2n +1)* — g(Zn - 1)3] = %1(2,1 +1)(2n —3)(4n* + 120 — 1)

Now we come back to (2.1) and get

i LGl 12 dn 1 (nr )2n-3)(@ + 1201 1

kr -
= cos* T 4 4 48 )

8
= gn(n + )R +n+1)

then (2) is

1
=n—2(2n* +2n) + gn(n + (P +n+1)= §n(zn + 1)(4n* + 6n —1)
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Zn: <tan kn
= 2n+1
We need only the last term.

Sy

6 n 6
) Sy
= =
k=1 Ck,n

+Z 8

n

k=

2

3
(2
1 Ckn

——1+Z

3 N 1
Clin Cl?,n

64

k=1 <cos 2511) (1 + cos L (2 t e 4 e
2n 2n
64 64z
=—1+ ) =1+ Z "
= (2+zk+zk (zx + 1
2n
—1 3 3 1
=—-1+64 — — +
kz_;) ((1 +z)¢ (I4+z)p (T4+z)t 1+ Zk)3)
n 1 1 2n 1
@ )
k=1 v k=1 [ cog =& >
2n+1
—1 > -1 3 3 1
=— 432 — — +
2 ,;)((1 +720)°  (1+z)° (I+z»)* (1+Zk)3>
We start with (2.2)
2n -6 P(IV) pP"p (P//)z 12P//<P/)2 6<P/)4
> = —4—— 3y -
(z—z) P P2 P2 P3 p4
By differentiating
dn =6 22 24
dz = (z—z)*  Zz—a)
d P(IV) 4P///P/ ; (P//)z 12P//(P/)2 6<P/)4
7 R R =R - -
po  p@p 4 P p" (P//)ZP/ P///(P/)Z
=— ——— — —(PYP L POIP) -6 6 8
P P? P2< * ) P? * P3 * P3
P///(P/>2 (P//>2P/ (P/)3P” <P1)3P// (P/)S
FI2 i o 2 36— 24— 4 24 =
P(S) P(4)P/ p"p" P///(P/)z (P//)2P/ P//(P/)3
= o =S — 10— 4 20— 30— — 60— — +
(P)?
24

By using (1) we have

—(2n + 1)(40n* + 60n* — 70n + 3)
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(3.1)

+



d< 24 22 ~120
dz = (z—z)  Z(z—a)

d P(S) P(4)P/ P"p" P”/(P/)Q (P//>2P/ P”(P’)3
=—|— - —10 20 30 — 60
e pr T TR P
(P)°
124
P(6) P(S)Pl P(4) p’ P(4) (P/)2 PIII<PI)3 P p"p"
= -6 — 15 30 — 120 120
P 2 P p3 P p3
(P///)Z (P//)3 (P/)2<P//)2 P//(P/)4 (P/)6
—10"—— + 30" = 270-———— + 360—— — 120
and evaluated for z = —1 yields
2n 1

(2n + 1)(2n —1)(2n — 5)(16n° + 88n* + 114n — 3)

k=0 (z—z)° - —8-120

(3.1) yields
i 21 i((2n +1)(2n — 1)(2n — 5)(16n° + 88n* + 14n — 3) +
o2 8-120
6*(211 + 1)(40n° + 60n* — 70n + 3) 96(2n +1)(2n — 3)(4n* + 12n — 1) N

96 48

120 +4n—1 8
’H—gn = znln -+ 1)(8n* + 16n° + 19n” + 11n + 6)

+32

Now we can come back to (3) and write

S3(n) = Zn: (tan 2nk: 1)6 =

k=1

8
=n+3(2n* + 2n) — 3§n(n +D)(n*+n+1)+
8
+En(n + 1)(8n* + 160 + 19n* + 11n + 6) =

1
= En(zn + 1)(32n* + 80n® + 40n* — 20n + 3)

Also solved by Toyesh Prakash Sharma (Student) Agra College, India and the proposer.

Editor’s Statement: It goes without saying that the problem proposers, as well as the solution
proposers, are the élan vital of the Problems/Solutions Section of SSMJ. As the editor of this Sec-
tion of the Journal, I consider myself fortunate to be in a position to receive, compile and organize
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a wealth of proposed ingenious problems and solutions intended for online publication. My un-
wavering gratitude goes to all the amazingly creative contributors. We come together from across
continents because we find intellectual value, joy and satisfaction in mathematical problems, both
in their creation as well as their solution. So that our collective efforts serve us well, I kindly ask
all contributors to adhere to the following guidelines. As you peruse below, you may construe that
the guidelines amount to a lot of work. But, as the samples show, there’s not much to do. Your
cooperation is much appreciated! . . . And don’t worry about making a mistake. All is well!

Keep in mind that the examples given below are your best guide!

Formats, Styles and Recommendations

When submitting proposed problem(s) or solution(s), please send both LaTeX document and pdf
document of your proposed problem(s) or solution(s). There are ways (discoverable from the in-
ternet) to convert from Word to LaTeX.

Regarding Proposed Solutions:

Below is the FILENAME format for all the documents of your proposed solution(s).
#ProblemNumber_FirstName LastName_Solution_ SSMJ

e FirstName stands for YOUR first name.
e [astName stands for YOUR last name.

Examples:
#1234_Max_Planck_Solution_SSMJ

#9876 Charles_Darwin_Solution_ SSMJ

Please note that every problem number is preceded by the sign # .

All you have to do is copy the FILENAME format (or an example below it), paste it and then
modify portions of it to your specs.

Please adopt the following structure, in the order shown, for the presentation of your solution:

1. On top of the first page of your solution, begin with the phrase:
“Proposed Solution to #**** SSMJ”

where the string of four astrisks represents the problem number.
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2. On the second line, write
“Solution proposed by [your First Name, your Last Name]”,

followed by your affiliation, city, country, all on the same linear string of words. Please see the
example below. Make sure you do the same for your collaborator(s).

3. On a new line, state the problem proposer’s name, affiliation, city and country, just as it ap-
pears published in the Problems/Solutions section.

4. On a new line below the above, write in bold type: “Statement of the Problem”.

5. Below the latter, state the problem. Please make sure the statement of your problem (unlike
the preceding item) is not in bold type.

6. Below the statement of the problem, write in bold type: “Solution of the Problem”.
7. Below the latter, show the entire solution of the problem.

Here is a sample for the above-stated format for proposed solutions:

Proposed solution to #1234 SSMJ

Solution proposed by Emmy Noether, University of Gottingen, Lower Saxony, Ger-
many.

Problem proposed by Isaac Newton, Trinity College, Cambridge, England.

Statement of the problem:

- n
Compute =k,
p kz_;)(k) y

Regarding Proposed Problems:

For all your proposed problems, please adopt for all documents the following FILENAME for-
mat:

FirstName_LastName_ProposedProblem_SSMJ_YourGivenNumber_ProblemTitle
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If you do not have a ProblemTitle, then leave that component as it already is (i.e., ProblemTitle).

The component YourGivenNumber is any UNIQUE 3-digit (or longer) number you like to give
to your problem.

Examples:
Max_Planck_ProposedProblem_SSMJ_314_HarmonicPatterns

Charles_Darwin_ProposedProblem_SSMJ_358_ProblemTitle

Please adopt the following structure, in the order shown, for the presentation of your pro-
posal:

1. On the top of first page of your proposal, begin with the phrase:
“Problem proposed to SSMJ”
2. On the second line, write
“Problem proposed by [your First Name, your Last Name]”,

followed by your affiliation, city, country all on the same linear string of words. Please see the
example below. Make sure you do the same for your collaborator(s) if any.

3. On a new line state the title of the problem, if any.
4. On a new line below the above, write in bold type: “Statement of the Problem”.

5. Below the latter, state the problem. Please make sure the statement of your problem (unlike
the preceding item) is not in bold type.

6. Below the statement of the problem, write in bold type: “Solution of the Problem”.
7. Below the latter, show the entire solution of your problem.

Here is a sample for the above-stated format for proposed problems:

Problem proposed to SSMJ
Problem proposed by Isaac Newton, Trinity College, Cambridge, England.

Principia Mathematica (<— You may choose to not include a title.)

37



Statement of the problem:

u n
Compute ok,
p /;)(k) y

s+ & »« Thank You! « « «
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